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ABSTRACT

SCHUNERT, SEBASTIAN. Development of a Quantitative Decision Metric for Selecting the
Most Suitable Discretization Method for SN Transport Problems. (Under the direction of
Yousry Y. Azmy.)

In this work we develop a quantitative decision metric for spatial discretization methods

of the SN equations. The quantitative decision metric utilizes performance data from selected

test problems for computing a fitness score that is used for the selection of the most suitable

discretization method for a particular SN transport application. The fitness score is aggregated

as a weighted geometric mean of single performance indicators representing various performance

aspects relevant to the user. Thus, the fitness function can be adjusted to the particular needs

of the code practitioner by adding/removing single performance indicators or changing their

importance via the supplied weights.

Within this work a special, broad class of methods is considered, referred to as nodal

methods. This class is naturally comprised of the DGFEM methods of all function space

families. Within this work it is also shown that the Higher Order Diamond Difference (HODD)

method is a nodal method. Building on earlier findings that the Arbitrarily High Order Method

of the Nodal type (AHOTN) is also a nodal method, a generalized finite-element framework

is created to yield as special cases various methods that were developed independently using

profoundly different formalisms.

A selection of test problems related to a certain performance aspect are considered: an

Method of Manufactured Solutions (MMS) test suite for assessing accuracy and execution time,

Lathrop’s test problem for assessing resilience against occurrence of negative fluxes, and a

simple, homogeneous cube test problem to verify if a method possesses the thick diffusive limit.

The contending methods are implemented as efficiently as possible under a common SN

transport code framework to level the playing field for a fair comparison of their computational

load. Numerical results are presented for all three test problems and a qualitative rating of

each method’s performance is provided for each aspect: accuracy/efficiency, resilience against

negative fluxes, and possession of the thick diffusion limit, separately. The choice of the most

efficient method depends on the utilized error norm: in Lp error norms higher order methods

such as the AHOTN method of order three perform best, while for computing integral quantities

the linear nodal (LN) method is most efficient. The most resilient method against occurrence

of negative fluxes is the simple corner balance (SCB) method.

A validation of the quantitative decision metric is performed based on the NEA box-in-

box suite of test problems. The validation exercise comprises two stages: first prediction of

the contending methods’ performance via the decision metric and second computing the actual
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scores based on data obtained from the NEA benchmark problem. The comparison of predicted

and actual scores via a penalty function (ratio of predicted best performer’s score to actual best

score) completes the validation exercise. It is found that the decision metric is capable of very

accurate predictions (penalty < 10%) in more than 83% of the considered cases and features

penalties up to 20% for the remaining cases. An exception to this rule is the third test case

NEA-III intentionally set up to incorporate a poor match of the benchmark with the “data”

problems. However, even under these worst case conditions the decision metric’s suggestions are

never detrimental. Suggestions for improving the decision metric’s accuracy are to increase the

pool of employed data, to refine the mapping of a given configuration to a case in the database,

and to better characterize the desired target quantities.
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Chapter 1

Introduction

Solving particle transport problems is of great interest in many disciplines of science and en-

gineering such as nuclear reactor design, astro-physics and health-physics. Traditionally, two

vastly different methods were developed to obtain approximate solutions of transport problems,

namely stochastic methods (typically referred to as Monte Carlo methods) and deterministic

methods; only the latter shall be of interest in this work.

Common to all deterministic algorithms that approximate solutions to transport problems

is that they attempt to solve some form of the linear particle transport equation. The two most

prominent forms of the linear transport equation are the integro-differential and the integral

forms[2], both of which find wide application as the starting point for the derivation of numerical

solution methods, but only the former will be considered in this work.

The primary, dependent variable in a deterministic transport calculation is the angular flux,

which depends on the six independent phase space variables space and velocity1, and, possibly

the time variable as well. In order to obtain a system of equations that can be solved on a

digital computer, all these variables have to be discretized. Because of the lack of alternatives,

the energy variable is almost invariably discretized via the multigroup formalism[3], which

integrates the transport equation separately over a finite number of energy bins and defines

multigroup constants that conserve relevant quantities, e.g. reaction rates, integrated over each

energy bin.

For the discretization of the directional variable, two main flavors have developed over the

course of the years, namely the SN and the PN methods. The SN method is a collocation

method in angle first introduced in [4], while the PN [5] method projects the transport equation

onto the orthogonal set of spherical harmonics[6] that is appropriately truncated, thus closing

the resulting system of equations. Throughout this work the SN method is adopted. Within

the framework of this thesis, we are concerned with the discretization of the SN equations which

1Usually expressed as direction of motion and particle energy.
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are a set of linear hyperbolic equations in space. The discretization of the spatial variable of the

SN equations will be referred to as spatial discretization. Therefore, the exact solution of the

SN equations is considered the reference solution for all the following discussion. This means

that the discussion is confined to the multigroup-SN realm.

In contrast to the discretization in angle and energy, numerous schemes have been pro-

posed for the discretization of the spatial variables, particularly for the multigroup SN equa-

tions comprising classical finite difference methods, finite volume methods, short characteristic

methods, nodal methods and discontinuous finite element methods. This work will elaborate

on the relationships between some of these broad classes of methods. The abundance of spatial

discretization methods can be attributed to the plethora of typical requirements for the dis-

cretization methods. Often, the prospective user has a list of properties ranked from essential

to important to nice-to-have. This “check-list” is highly application specific and will therefore

vary significantly by application and purpose of the calculation. In the following, a list of

possible properties that users might require from spatial discretization methods is compiled:

A. Essential Properties Required of SN Discretization:

1. Conservation of neutrons: The discretization method satisfies a discrete version of

the balance equation.

2. Algebraic linearity: The discretization method does not introduce non-linearities

into the underlying numerical method equation or the iterative solution process.

B. Important Properties Required of SN Discretization:

1. Accuracy: Given a fixed mesh size, the method is close to the exact solution in a

norm relevant to the user.

2. Second order truncation error: Assuming a sufficient number of partial derivatives

is bounded, the method features a truncation error larger than unity.

3. Pointwise/cellwise convergence: The numerical solution converges to the true solu-

tion everywhere even if the exact solution is non-smooth.

4. Resolution of the diffusion limit: In the thick diffusion limit the discretization of the

SN equations satisfies, to leading order, a discretization of the Diffusion equation.

5. Execution time: Given a fixed mesh size and spatial expansion order (collectively

described by the number of degrees of freedom), the execution time of the method

is small.

6. Computational efficiency: Refers to how much execution time is necessary to achieve

a certain level of solution accuracy (assuming iterative error sufficiently reduced).
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7. Positivity: Given a positive source and positive inflow into a mesh cell, the dis-

cretization method does not produce (or is less susceptible to producing) unphysical

negative cell-averaged and cell face angular fluxes.

C. Desirable Properties of SN Discretization:

1. Robustness: No unphysical oscillations are present even in the presence of strong

material heterogeneities, voids, and the like.

2. Minimal spreading of a beam in vacuum (numerical diffusion).

The above list of desired properties is partially adapted from [7] and [8], but it is by no means

complete. The properties in A are satisfied by all methods considered in this work (i.e. all

methods are conservative and algebraically linear), and are therefore not discussed in any

detail. Subset B is within the main focus of this work, while subset C is beyond the scope of

this work.

The coexistence of a multitude of spatial discretization schemes is due to the lack of a

consistent best performer according to these measures among the set of available schemes.

In addition, some of the listed properties are mutually exclusive, e.g. A.2, B.2, and B.7:

Algebraically linear, second order methods that preclude negative fluxes cannot exist[9]. The

choice of a suitable discretization method is driven by the needs of the user and thus the

characteristics of the specific problem to be solved.

This work is concerned with investigating the performance of various spatial discretization

schemes of the one-group, multidimensional SN equations on Cartesian grids with respect to

the properties listed above to guide the decision making process in real world applications. To

this end three sets of test problems are employed to evaluate the performance of a selection

of spatial discretization methods and rank their performance based on suitable performance

metrics. A fitness function, adjustable to a given “check-list” of requirements, is designed that

aggregates the data obtained from these test problems into a single number indicating how

suitable a discretization method is for a specific problem. The fitness function explicitly allows

for augmenting the current set with new properties that are not considered within this work,

for example robustness in the presence of strong material heterogeneities and/or voids.

The four properties that this work focuses on are execution time, accuracy, positivity, and

possession of the discrete diffusion limit; accuracy and execution time, are frequently aggregated

into the method’s computational efficiency.

Three test problems are used to characterize the performance of the considered discretization

methods with respect to the selection of desired properties. This work’s results are based on

the assumption that the data obtained from the test cases are representative of more complex,

real world applications.
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A set of pre-existing, promising discretization methods was selected, including discontinuous

finite element methods (DGFEM) ([10], [11], [12]), the simple corner balance method (SCB) [7],

AHOTN methods[13], linear-nodal(LN), and linear-linear (LL) methods[14] and the arbitrary

polynomial order extensions of the Diamond Difference method (HODD) ([15], [16]). All were

implemented for three-dimensional Cartesian geometry.

In addition, a novel method that explicitly tracks and eliminates lines and planes of non-

smoothness originating from “inconsistent” boundary conditions was developed and imple-

mented. This method uses the Step approximation in all cells that are intersected by lines

and planes of non-smoothness. It can be considered an extension of Duo’s Singular Character-

istic Tracking algorithm[17] to three spatial coordinates. However, it is important to point out

that this extension is highly non-trivial because of the tremendous increase in complexity of the

tracking and cell-splitting algorithms involved. The new method is labeled SCT-Step method.

All implementations place a high premium on reducing the computational overhead to a

minimum in order to level the playing field for a fair comparison with respect to the efficiency

aspect discussed before. In addition to implementing these methods, analysis was performed

showing that several classes of methods can be recast as discontinuous finite element methods

thus unifying the treatment of methods that we previously thought to be unrelated.

The test problems presented within this work are utilized to measure the performance of

the implemented spatial discretization methods. The first set of test problems focuses on mea-

suring the discretization method’s accuracy and execution time. It is based on an extension

of Larsen’s two-dimensional homogeneous square test[18] to three spatial dimensions and scat-

tering media. This is achieved by utilizing the Method of Manufactured Solution (MMS) [19]

approach which allows for securing knowledge of the underlying exact solution without com-

promising the necessary complexity of the test problem. In contrast to slab geometry, realistic

multi-dimensional SN problems support at most bounded first order partial derivatives of the

angular flux[20] thus limiting the attainable convergence rate (with mesh refinement) of any

standard spatial discretization method. Therefore, viable test cases need to take the limited

exact solution smoothness into consideration because it directly affects the solution accuracy of

deployed spatial discretization methods ([21], [22], [17]). The implemented three-dimensional

MMS test suite explicitly accommodates an arbitrary degree of smoothness of the exact under-

lying solution.

The second family of test problems is based in Lathrop’s test case [9]. It is designed to be

a challenging test for methods’ resilience against negative fluxes. It consists of a small source

region (region I) enclosed in a large, typically optically thick, source-free region (region II).

The solution in region II often suffers from the occurrence of negative fluxes. A family of test

problems is created by varying the total cross sections and scattering ratios of the involved

materials in regions I and II.
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Finally, the third problem tests whether the selected methods possess the thick diffusion

limit. Consider a configuration with the property that the optical thickness increases while

particle removal, absorption and leakage across the boundaries, vanishes. In this configuration,

a typical length scale over which the flux changes significantly is not determined by the parti-

cle’s mean free path but by the (much larger) diffusion length. Therefore, sufficiently accurate

results can be obtained on very coarse meshes (with respect to the particles mean free path) if

the method possesses the diffusion limit. A method is said to possess the diffusion limit if the

corresponding discretization limits to a discretization of the diffusion equation in configurations

as described above. The third set of challenge problems features a homogeneous medium with

vacuum boundary conditions on all outside boundaries. The material properties are subjected

to scaling using a small parameter such that in the limit of small values, the problem approaches

the diffusion limit. The methods’ solutions are then compared to the limiting solution of the dif-

fusion problem. For a selection of discretization methods, analysis was performed corroborating

the results of the thick-diffusion test problem.

The final goal of this work is the construction of a performance metric aggregating data

measuring vastly different properties of the selected discretization methods. The approach

taken within this work computes a single fitness value for spatial discretization methods based

on user-selected properties that are ranked by importance to the user. The fitness value has

the property that it ranges from zero to unity, with zero being the worst and unity being the

best score.

This metric, once validated, would be of great utility in production-level SN codes where

the user would set their requirements as input to the code then the decision metric would

automatically choose among the various discretization methods implemented in the code that

best suits the user’s demands.

1.1 The Transport Equation

The linear Boltzmann transport equation describes the evolution of the flux of neutral particles,

i.e. neutrons or photons, in a host medium. It can be obtained from the general Boltzmann

transport equation by neglecting particle-particle interactions, the dependence of the material

properties of the host medium on the particle flux, and assuming that no electric force field is

present. Heuristically, it can be derived as a detailed balance of particle production and loss

mechanisms in phase space (cf. [23], [3]). The linear transport equation with boundary and
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initial conditions in a form that is general enough for our purposes is given by:

1

v

∂ψ

∂t
+ Ω̂ · ∇ψ + σt(~r,E, t)ψ(~r, Ω̂, E, t) =∫

4π
dΩ̂′

∫ ∞
0

dE′σs(~r, Ω̂ · Ω̂′, E′ → E, t)ψ(~r, Ω̂′, E′, t)+

κ(E)

4π

∫
4π
dΩ̂′

∫ ∞
0

dE′ν(~r,E′, t)σf (~r,E′, t)ψ(~r, Ω̂′, E′, t) +
q(~r,E, t)

4π
if ~r ∈ D

ψ(~r, Ω̂, E, 0) = ψ0(~r, Ω̂, E)

ψ(~r, Ω̂, E, t) = ψB(~r, Ω̂, E, t) if ~r ∈ ∂D and n̂ · Ω̂ < 0, (1.1)

where

• ~r = (x, y, z)T : Vector of Cartesian spatial coordinates

• Ω̂ = (µ, η, ξ)T : Unit vector of direction cosines with respect to coordinate axes x, y and

z.

• E: Energy.

• t: Time.

• ψ(~r, Ω̂, E, t): Angular flux.

• σs(~r, Ω̂ · Ω̂′, E′ → E, t): Double differential, macroscopic scattering cross section.

• σt(~r,E, t), σf (~r,E, t): Macroscopic total collision and fission cross section, respectively.

• κ(E): Fission spectrum.

• ν: Fission yield.

• q(~r,E, t): Isotropic external distributed source.

• ψ0(~r, Ω̂, E): Initial condition: known flux at t = 0.

• ψB(~r, Ω̂, E, t): Explicit boundary conditions: known incoming flux on the boundary.

• n̂: Outward normal vector defined on the boundary ∂D.

The independent variables ~r, Ω̂, and E constitute the six-dimensional phase space, and the

dependent variable, the angular flux ψ, is a distribution over the independent variables.

In this work we are only concerned with steady state solutions of the one-group transport

equation in a non-multiplying medium featuring isotropic scattering. To this end, the derivative
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of the angular flux with respect to time is set to zero, and the time arguments are dropped in the

angular flux and the cross sections. Further, as the medium is non-multiplying and scattering

is isotropic: σf = 0 and σs(~r, Ω̂ · Ω̂′, E′ → E) = σs(~r,E
′ → E)/4π. Thus the transport equation

can be written as:

Ω̂ · ∇ψ + σt(~r,E)ψ(~r, Ω̂, E) =
1

4π

∫ ∞
0

dE′σs(~r,E
′ → E)φ(~r,E′) +

q(~r,E)

4π
for ~r ∈ D, (1.2)

where the scalar flux φ has been introduced:

φ(~r,E) =

∫
4π
dΩ̂ψ(~r, Ω̂, E). (1.3)

For the purpose of discretizing the energy variable, we apply the operator
∫∞

0 dE· to the

continuous-energy transport equation, Eq. 1.2, using the following definitions:

ψ̂(~r, Ω̂) =

∫ ∞
0

dEψ(~r, Ω̂, E)

φ̂(~r) =

∫ ∞
0

dEφ(~r,E)

σs(~r,E
′) =

∫ ∞
0

dEσs(~r,E
′ → E)

σ̂k(~r) =

∫∞
0 dEσk(~r,E)ψ(~r, Ω̂, E)

ψ̂
for k = t, s

q̂(~r) =

∫ ∞
0

dEq(~r,E),

Using these expressions, Eq. 1.2 can be rewritten as

Ω̂ · ∇ψ̂ + σ̂t(~r)ψ̂(~r, Ω̂) =
1

4π
σ̂s(~r)φ̂(~r) +

q̂(~r)

4π
for ~r ∈ D. (1.4)

For the sake of convenience we omit the hat above all quantities in the remainder of the

discussion.

The one-group transport equation, Eq. 1.4, depends continuously on the five remaining

phase space variables, namely space ~r, and direction of motion of the particles Ω̂. As this

work is concerned with the spatial discretization in particular, we discretize the directional

variable via the SN method and use the resulting equations as the starting point of all further

discussions. The SN method proceeds by solving the transport equation only along discrete rays

Ω̂n = (µn, ηn, ξn)T , with n = 1, .., N , approximating the integration over the angular variables

by a quadrature rule {Ω̂n, wn}n=1,..,N satisfying
N∑
n=1

wn = 4π. Applying the SN formalism to

7
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Eq. 1.4 yields:

Ω̂n · ∇ψn + σt(~r)ψn(~r) =
1

4π
σs(~r)φN (~r) +

q(~r)

4π
for n = 1, .., N and ~r ∈ D

φN (~r) =
N∑
n=1

wnψn(~r)

ψn(~r) = ψB(~r, Ω̂n) for n = 1, .., N and ~r ∈ ∂D and n̂ · Ω̂ < 0, (1.5)

where ψn(~r) ≈ ψ(~r, Ω̂n) is an approximation of the true one-group angular flux at Ω̂n.

The set of SN equations Eq. 1.5 continuously depends on the spatial variables ~r = (x, y, z)T .

All comparisons between reference and numerical solution is made within the SN framework,

i.e. the reference as well as the numerical solution both adopt the SN approximation for the

discretization of the angular variables. Consequently, discretization errors are entirely due to

the applied spatial discretization and not due to the finite number of utilized discrete directions

N .

1.2 Solution of the One-Group SN Equations

This section briefly introduces methods to iteratively solve the one-group SN equations in their

first order form. As this work is concerned with spatial discretization methods and not with the

iterative solution of the SN equations, this section shall not aspire for completeness, but rather

introduce the concept of the space-angle mesh sweep, the source iteration, and the GMRES

solution of the SN equations to the unfamiliar reader.

1.2.1 Space-Angle Mesh Sweep

Let us first discuss the solution of the SN equations in the absence of scattering leading to a

set of decoupled first order partial differential equations:

Ω̂n · ∇ψn + σt(~r)ψn(~r) =
q(~r)

4π
for n = 1, .., N and ~r ∈ D

φN (~r) =

N∑
n=1

wnψn(~r). (1.6)

Anticipating the detailed discussion of spatial discretization schemes, the solution of a single

SN equation along direction n with a given source term can be accomplished by using a mesh

sweep[23] if the discretization uses only information from upstream cells. A mesh sweep starts in

the corner cell of the domain featuring three boundary faces such that all upstream information

is determined by the boundary conditions. After obtaining the solution for the corner cell

8
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including the face fluxes separating this cell and its downstream neighbors, the next downstream

cell can be solved by using the already obtained solution for the corner. By repeating this basic

step, the spatial mesh can be swept in the downstream direction for each Ω̂n until the solution

in all cells is obtained.

Mathematically, the mesh sweep recognizes that the global system of discretized equations

for each direction Ω̂n, i.e. the algebraic system comprising the streaming and total interaction

operators, is lower or upper triangular (depending of the numbering of the unknowns), and the

mesh sweep resembles forward or backward substitution, respectively.

Performing mesh sweeps for all directions in the quadrature set (n = 1, ..., N) and applying

the quadrature formula completes a single space-angle sweep. If the considered problem is

in fact non-scattering, a single space-angle mesh sweep returns the full solution of the SN

equations. In the presence of scattering, an iterative algorithm is necessary for obtaining the

solution of the SN equations.

1.2.2 Source Iterations

The right hand side of the SN equations, Eq. 1.5, comprises the weighted sum of the angular

fluxes along all directions, thus coupling the equations across discrete ordinates. Typically, for

the sake of performance, the solution of the SN equations progresses one discrete ordinate at

a time via a space-angle sweep such that a viable iteration scheme must decouple the discrete

ordinates within iterations. The idea of the predominantly used Source Iteration method is to

guess the angular flux, compute the scattering source and right hand side of Eq. 1.5, compute

the angular fluxes for all n = 1, ..., N using a space-angle sweep, and then recompute the

scattering source. Formally, this can be written as

Ω̂n · ∇ψp+1
n + σt(~r)ψ

p+1
n (~r) =

1

4π
σs(~r)φ

p
N (~r) +

q(~r)

4π

φp+1
N (~r) =

N∑
n=1

wnψ
p+1
n (~r), (1.7)

where p is the iteration index. Switching to more convenient operator notation borrowed from

[24], Eq. 1.7 is recast as:

ψp+1
n = L−1 (Sφp + q)

φp+1 = Dψp+1. (1.8)

where L, S, and D are the streaming/collision, scattering, and quadrature operators, respec-

tively. It is understood that the streaming/collision operator is inverted matrix-free within the

framework of a space-angle sweep.

9
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1.2.3 GMRES Solution of SN equations

Recently, attention has arisen to utilize the Generalized Minimal Residual (GMRES)[25] solver

for the solution of the one-group SN equations. The specifics of the GMRES method are

detailed in [25]. Here, it shall be sufficient to mention that GMRES only requires matrix-vector

multiplications of a matrix A to solve the linear system Ax = b. Within the SN setting, GMRES

is utilized as follows[24]. First Eq. 1.8 is manipulated to obtain

Dψn = φ = DL−1 (Sφ+ q)⇒

I−DL−1S︸ ︷︷ ︸
A

φ = DL−1q, (1.9)

where iteration indices are dropped. Then, it is recognized that only the matrix-vector product

involving A is required. Therefore, the solution of the SN equations uses four simple steps:

Before starting GMRES iterations:

0. Perform a single space-angle sweep on the fixed source b = DL−1q to obtain the

right-hand side for GMRES solution.

Matrix Vector Product: (I−A) v

1. Compute the scattering source s = Sv.

2. Space-angle sweep on the scattering source v′ = DL−1s.

3. Return v − v′.

Given an implementation of the source iteration scheme it is straight forward to implement a

GMRES solver subroutine because it relies on the same basic functions that are instrumental

to source iterations.

1.3 Thesis Outline

This thesis is organized as follows: in chapter 2 all contending discretization methods are re-

viewed. It is demonstrated that several of these methods can be recast as discontinuous finite-

element methods thus creating a common framework of related methods. Subsequently, the

utilized test cases are introduced in chapter 3. The implementation of the contending methods

along with two new algorithms regarding spatial discretization methods of the SN equations are

discussed in chapter 4. In chapter 5 numerical results of the contending discretization methods

for all three test problems are presented and a qualitative ranking of methods’ properties re-

garding efficiency, positivity and possession of the thick diffusion limit is presented. The data
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obtained from the “numerical experiments” in chapter 5 serves as the basis of the quantita-

tive decision metric. Finally, chapter 6 is dedicated to the development and validation of the

quantitative decision metric.
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Chapter 2

Review of Spatial Discretization

Methods

It is the purpose of this work to compare the properties of various (promising) spatial discretiza-

tion methods of the multi-dimensional SN equations. This chapter introduces a general clas-

sification of spatial discretization methods especially stressing the importance of discontinuous

finite element methods (DFEM) before laying out the general framework typically used for the

derivation for these methods. Subsequently, methods traditionally used for the discretization

of the SN equations are reviewed along with accounts of their performance whenever available.

Finally, some of the reviewed methods are re-derived as DFEM methods, thus reducing the

difference between them to differences in the respective test and trial spaces.

2.1 General Classification of Spatial Discretization Methods

The ultimate goal of this work is to construct a decision metric associating features of a given test

problem and the computed quantities of interest with the best performing spatial discretization

scheme. To this end, it is useful to elaborate on the classification of spatial discretization

schemes typically encountered in computational science. Moreover, terminology in most fields

like computational fluid dynamics (CFD) closely follows the standard jargon, but computational

neutron transport methods evolved without much communication with other fields, and thus

utilize a slightly different terminology. This section contrasts three broad classes of spatial

discretization methods, namely finite difference methods (FDM)[26], finite volume methods

(FVM)[27], and finite element methods (FEM)[28]. It also classifies the type of schemes that

are considered in the remainder of this work in the standard jargon as used in [10].

The FDM approximates the solution of the constituting PDEs by grid function values that

are only defined at a finite number of points by replacing the partial derivatives present in the
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PDE by finite differences. Since finite differences involve the grid function value at neighboring

points the equation obtained at each grid point is coupled to the equations at a certain number

of neighboring grid points. The approximation order of a finite difference scheme is determined

by the employed finite differences: The more neighboring points are involved, the higher in

general the order of accuracy1, but the more coupling between the equations.

In this work, FDMs are not considered for two reasons: First, the SN equations are an

expression of neutron balance, but the FDM is in general not conservative because it approx-

imates the neutron flux at grid points as opposed to over cell volumes. Second, the coupling

between neighboring grid points necessitates solving a global matrix equation involving all grid

function values if the finite differences involve downstream as well as upstream information. If

only upstream values2 are utilized, sweeping the mesh is still possible. However, depending on

the size of the finite difference stencil, a memory overhead compared to more localized methods

can be expected because the global system of equations has more non-zero off-diagonal terms.

An additional problem when using wide stencils is how to generate grid function values out-

side of the domain which are necessary when evaluating the FDM equations for points close to

the boundary. Further shortcomings of the FDM are that it cannot be extended to unstruc-

tured grids (such as tetrahedral grids) and that it may exhibit oscillations near sharp material

discontinuities because of the near-discontinuous[29] underlying solution in their vicinity. For

the reasons mentioned above, the FDM method is currently not used in neutron transport

applications any more, but older attempts can be found in [20].

The FVM most often used in CFD decomposes the domain into homogeneous mesh cells,

then integrates the system of conservation equations over the extent of each cell. Subsequently,

Gauss’ theorem is used and the volume integrals of the derivative terms are recast as integrals

over the cell faces. Using the homogeneity of the cell, the volume and face integrals can then

be rewritten as averages of the dependent variable over the volume and faces, respectively. In

the framework of FVMs, the face-averaged fluxes that originate from applying Gauss’ theorem

are referred to as numerical fluxes.

The obtained balance-relation between the numerical fluxes and the average is exact, but

it comprises more unknowns than equations, and hence requires closure. The closure is usually

obtained via a reconstruction approach, which assumes that the true dependent variable has

the shape given by some simple function, e.g. a polynomial of some order. Using the averages

of the dependent variable in the neighboring cells, an interpolation formula can be devised that

allows for the numerical fluxes on the edges to be computed from the cell averages living in the

neighboring cells[27].

However, the interpolation formula also globally couples the averages in neighboring cells

1Given sufficient smoothness of the underlying exact solution.
2For example by using one-sided finite differences
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in a manner very similar to FDM (with the exception of the first order step method), imposing

the restriction that increasing the accuracy requires enlarging the stencil, thus causing more

coupling between cells. Moreover, if the interpolation formula requires downstream values, then

the full global system of equations has to be solved simultaneously, increasing the execution time

tremendously. Finally, if sharp material discontinuities exist, then the solution might feature

oscillations because the reconstruction spanning multiple cells assumes that the underlying

solution does not stray too much from the assumed polynomial shape.

Common to all FEM schemes is that the solution of the PDE is approximated by a linear

combination of functions belonging to some finite dimensional trial function space. The un-

knowns of the FEM computation are the coefficients of the linear combination of trial functions,

also referred to as expansion coefficients. Several different approaches exist to derive an alge-

braic system of equations for the unknown expansion coefficients, but common to all of them

is that the set of PDEs is replaced by an integral formulation of the problem, i.e. the set of

equations of interest is replaced by some integral over the domain of interest: If the solution

of the PDE minimizes a particular functional, then the flux expansion via the trial functions

can be substituted into the functional, and setting the functional’s derivatives with respect to

the expansion coefficients to zero provides enough equations to determine all expansion coeffi-

cients (Ritz method). If such a functional does not exist, then the residual of the approximate

solution can be required to be orthogonal to a set of test functions with respect to some in-

ner product(weighted-residual method). Finally, the least squares FEM (LSFEM) requires the

integral of the square of the residuals over the domain to be minimal.

The FEMs can further be divided into continuous (CFEM) and discontinuous methods

(DFEM), with the difference between these two classes being whether the global approximate

solution is continuous or not. Continuity in an FEM scheme is generally enforced by letting test

and trial function spaces be supported on adjacent patches of cells such that flux values at the

interfaces of cells are unique, i.e. regardless from which cell the interface point is approached,

the same flux value is encountered.

The flux shape on the interfaces can be retrieved by the unique (polynomial) interpolation

through the flux values on the interface. As the flux values on the interfaces are unique, the

polynomial interpolation is also unique and therefore the flux is continuous pointwise on the

interface. On the other hand DFEMs restrict the support for test and trial functions to a single

cell such that flux values at the interfaces are local to one cell and therefore not unique[10].

The coupling across cell interfaces in DFEMs is achieved by imposing boundary conditions on

the cells faces only in an integral (as opposed to pointwise) sense, which is very similar to the

way FVMs impose cell boundary conditions.

From an algorithmic point of view, the major difference between CFEM and DFEM is that

the former always features a globally coupled, albeit sparse, matrix, while DFEM’s matrix
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exhibits a block structure arising from the local character of the test and trial function spaces

with very little interdependency between the blocks. As a consequence, CFEM necessitates

the simultaneous solution of the global system of equations, but DFEM might allow a mesh

sweep if information only propagates downstream. At each step of this mesh sweep, a local

system of equations has to be solved whose size depends on the local expansion order but is

typically much smaller than the global system of equations. The preferential propagation of

information in the SN equations is accounted for by using the numerical upstream flux which

allows application of the mesh sweep, while for CFEMs the preferential direction cannot be

accounted for, leading to stability problems.

In summary, the FDM, FVM, and CFEM in their typical form all exhibit undesirable

properties that render them unfit for the solution of the SN equations, while the broad class of

DFEM is well suited for this purpose. Consistent with Ref. [10], the general scope of methods

considered in this work is referred to as nodal methods, which is used synonymously with

DFEM. Nodal methods are a class of methods that share the following properties:

• All function spaces are defined local to a mesh cell.

• Coupling between cells occurs only through their faces.

• Coupling between cells is only imposed in an integral sense.

• Increasing the order of the methods is achieved by increasing the local order of expansion.

In neutron transport theory, various spatial discretization methods have been derived using

physical arguments, but the final methods still shared all properties of nodal methods. The

term nodal method in neutron transport theory strictly applies to methods that use a set of

spatial Legendre-Polynomial moments of the SN transport equations augmented by closure

relations obtained from transverse moments of the continuum transport equation as e.g. in

[13]. Along the same line of thought are short characteristic schemes[30], which use the same

set of moments of the SN equations, but derive closure relations from approximate solutions

obtained from the characteristic form of the transport equation.

Both the nodal and characteristic schemes are shown to resemble discontinuous Petrov-

Galerkin FEMs (DPGFEM), and hence fall into the class of nodal methods as defined in this

work([1] and [31]). Discontinuous Petrov-Galerkin FEMs are DFEM, but in contrast to dis-

continuous Galerkin methods, they utilize different test and trial spaces while DGFEM utilize

identical test and trial spaces. Many similar schemes exist that utilize the same set of moment

equations augmented by some approximating assumption about the flux shape across the cell,

and all of these schemes belong to the class of nodal methods considered in this work.
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2.2 Discontinuous Finite Element Framework

Throughout the remainder of this work, the discretization of the spatial variables via the dis-

continuous finite element framework is of special importance. Therefore, this section introduces

notation and the weak and strong forms of the SN transport equation that commonly serve as

the starting point for the derivation of discontinuous finite element methods.

Let the domain D be decomposed into a set of conforming (no “hanging” nodes) cuboidal

elements Q~i = [xi−1, xi]×[yj−1, yj ]×[zk−1, zk] with xi, yj and zk indicating mesh cell boundaries

such that D =
⋃
~i

Q~i and ~i = (i, j, k)T . Let the set of all faces in D be given by E, and the set

of all faces of Q~i be denoted by

E~i =
{
EN~i ,E

S
~i
,EW~i ,E

E
~i
,ET~i ,E

B
~i

}
,

where N , S, W , E, T , and B represent the north, south, west, east, top and bottom faces,

respectively. Associated with each face is a unit outward normal vector n̂F with F = N,S,W,

E, T,B.

Deviating from standard notation, the E, N , and T faces are always outflow faces, while

the W , S, and B faces are always inflow faces. Hence, if components of Ω̂ change sign, then

for a given cell the denotation of the cell faces changes. The set of faces is then divided into

inflow and outflow faces according to the sign of the inner product: n̂F · Ω̂ < 0 and n̂F · Ω̂ > 0

for inflow and outflow faces, respectively. We refer to the set of all inflow faces as EI , and to

the set of all outflow faces as EO:

EO = {EE ,EN ,ET }

EI = {EW ,ES ,EB}. (2.1)

Further, we associate with each face an interior and exterior trace denoted by EF,+ and

EF,−, respectively. Restriction of information from within the cell to any face is defined on

the interior trace, while information from outside the cell is restricted to the exterior trace.

Note that discontinuities typical for discontinuous finite element methods[10] originate from

the pointwise difference of the exterior and interior flux traces, while for continuous FEM the

interior and exterior traces are identical.

The mesh shall always be constructed to approximate the problem configuration such that

the material properties, i.e. the total cross section σt (~r) and the scattering cross section σs (~r),

are constant within the cell Q~i; then we denote the total and scattering cross sections within

that cell by σ
~i
t and σ

~i
s, respectively.

A local approximation of the angular flux ψh,
~i

n (~r) on the element Q~i is given by a linear
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combination of trial functions f
~i
n,l(~r):

~r ∈ Q~i : ψn(~r) ≈ ψh,~in (~r) =
L∑
l=1

a
~i
n,lf

~i
n,l(~r), (2.2)

where the expansion coefficients a
~i
n,l as well as the trial functions f

~i
n,l(~r) may depend on

the Discrete Ordinate index n. The superscript h refers to the utilized mesh spacing h =

max
~i

(xi − xi−1, yj − yj−1, zk − zk−1) and serves as a reminder that the superscripted quantity

is an approximation of the exact solution. The global approximation of the angular flux can be

retrieved from the local approximations as their direct sum:

ψhn (~r) =
⊕
~i

ψh,
~i

n (~r) . (2.3)

Frequently, the restriction of the flux expansion on the cell faces will be needed, so for

convenience we denote the restriction onto the interior trace as:

ψhn(~r)
∣∣∣
E
F,+
~i

= lim
ε→0

ψhn(~r + sF |ε|Ω̂) if ~r ∈ EF~i ,

and onto the exterior trace as:

ψhn(~r)
∣∣∣
E
F,−
~i

= lim
ε→0

ψhn(~r − sF |ε|Ω̂) if ~r ∈ EF~i ,

where

sF =

{
1 if F ∈ EI

−1 if F ∈ EO.
.

Note, that for the definitions of the restriction operators, the global flux solution is used, which

means that the restriction onto the exterior trace uses the flux solution in the appropriate

adjacent cell.

The local space of test functions V
~i = span{v~il(~r)}Ll=1 with L = Λ3 is defined such that

v
~i
l(~r) = 0 if ~r /∈ Q~i, and as a direct consequence this implies∫

D

dV v
~i
l(~r)G(~r) =

∫
Q~i

dV v
~i
l(~r)G(~r) (2.4)

for any G(~r). As a short hand notation for the integrals on the left and right hand side we
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define ∫
D

dV v
~i
l(~r)G(~r) =

(
v
~i
r(~r), G(~r)

)
D

(2.5)∫
Q~i

dV v
~i
l(~r)G(~r) =

(
v
~i
r(~r), G(~r)

)
, (2.6)

respectively, and similarly for integrals over the cell faces:∫
EF
~i

dSv
~i
l(~r)G(~r) = 〈v~ir(~r), G(~r)〉F .

2.2.1 The Weak and Strong Form of the SN Transport Equation

The derivation of the weak and strong form of the SN equations largely follows Ref. [10], with

the distinct difference that in this work the SN equations are discussed while [10] illustrates the

development of the weak and strong form on the basis of the linear one-dimensional transport

equation.

Let the residual of the one-group SN equations, Eqs. 1.5, be given by:

Rn [Gn(~r)] = Ω̂n · ∇Gn(~r) + σt(~r)Gn(~r)− σs(~r)

4π

N∑
n=1

wnGn(~r)− q(~r)

4π
, (2.7)

with the obvious property that:

Rn [ψn(~r)] = 0.

In order to derive the weak and subsequently the strong form of the within-group SN transport

equation the local approximation of the angular flux in terms of the trial functions ψhn is

substituted into the expression for the residual Eq. 2.7. Note that now:

Rn

[
ψhn(~r)

]
6= 0,

i.e. the SN equations are not satisfied pointwise by ψhn (~r).

However, for deriving a discretized system of equations the residual is required to be or-

thogonal to all members of the test space with respect to the inner product (·, ·)D s.t. by using

Eq. 2.4 the following expression can be obtained:(
v
~i
l(~r), Ω̂n · ∇ψh,

~i
n + σ

~i
tψ

h,~i
n (~r)− σ

~i
s

4π
φh,

~i
N (~r)− q(~r)

4π

)
D

= 0 for all l = 1, .., L. (2.8)
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Applying integration by parts to the gradient term results in

−
(
ψh,

~i
n , Ω̂n · ∇v

~i
l

)
D

+

(
v
~i
l(~r), σ

~i
tψ

h,~i
n (~r)− σ

~i
s

4π
φh,

~i
N (~r)− q(~r)

4π

)
D

= −
∑
F

〈
v
~i
l , n̂

T
F Ω̂nF

∗
〉
F
, (2.9)

where F∗ is the numerical flux on the cell faces. The numerical flux is instrumental in coupling

the equations on Q~i to the rest of the domain, i.e. it imposes cell boundary conditions and

controls the flow of information for the discretization method. Equation 2.9 is referred to as

the weak form of the SN equations because it does not require the trial functions (and hence

ψh,
~i

n ) to possess integrable first partial derivatives.

The strong form of the SN equations can be obtained by applying integration by parts again

leading to:(
v
~i
l(~r), Ω̂n · ∇ψh,

~i
n + σ

~i
tψ

h,~i
n (~r)− σ

~i
s

4π
φh,

~i
N (~r)− q(~r)

4π

)
D

=
∑
F

〈
v
~i
l , n̂

T
F Ω̂n

(
ψhn

∣∣∣
E
F,+
~i

− F∗F

)〉
F

,

(2.10)

which in contrast to the weak form requires the trial functions to possess integrable first partial

derivatives. In this work we solely employ the numerical upstream flux given by:

F∗ =

 ψhn
∣∣
E
F,−
~i

if EF ∈ EI

ψhn
∣∣
E
F,+
~i

if EF ∈ EO
, (2.11)

i.e. the numerical flux is equal to the cell’s interior trace on all outflow faces, but equal to the

appropriate upstream cell’s flux on all inflow edges. Physically, the numerical upstream flux

ensures propagation of information only in the direction of neutron travel.

Upon substitution of Eq. 2.11, the weak and strong form Eqs. 2.8 and 2.10 become

−
(
ψh,

~i
n , Ω̂n · ∇v

~i
l

)
+

(
v
~i
l(~r), σ

~i
tψ

h,~i
n (~r)− σ

~i
s

4π
φh,

~i
N (~r)− q(~r)

4π

)

= −
∑
EO

〈
v
~i
l , n̂

T
F Ω̂n ψ

h
n

∣∣∣
E
F,+
~i

〉
F

−
∑
EI

〈
v
~i
l , n̂

T
F Ω̂n ψ

h
n

∣∣∣
E
F,−
~i

〉
F

, (2.12)

and (
v
~i
l(~r), Ω̂n · ∇ψh,

~i
n + σ

~i
tψ

h,~i
n (~r)− σ

~i
s

4π
φh,

~i
N (~r)− q(~r)

4π

)
=∑

EI

〈
vl, n̂

T
F Ω̂n[[ψhn]]F

〉
F
, (2.13)
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respectively, where we defined the jump operator [[]]F as the pointwise difference between the

interior and exterior traces:

[[G(~r)]]F = G|EF,+ − G|EF,− .

Most of the spatial discretization methods that are discussed in this work can be obtained

by selecting appropriate test and trial function spaces which are substituted into the weak

or strong form Eqs. 2.12 and 2.13, respectively, which leads to a local system of algebraic

equations.

2.3 Review of Spatial Discretization Methods for the SN Equa-

tions

In this section we review promising classes of spatial discretization schemes including diamond

difference type methods, discontinuous Galerkin finite element type methods (DGFEM) and

transverse moments based methods (TMB). For convenience let the spatial Legendre moment

of the flux denoted by ψ
~i
n,~m be defined as:

ψ
~i
n,~m = M

~i
~m {ψn (~r)}

M
~i
~m {·} =

1

V~i

∫
V~i
dV p

~i
~m (~r) · , (2.14)

where ~m = (mx,my,mz)
T denotes the order of the moments. Further, triple sums and products

of Legendre polynomials are abbreviated by:

Λ∑
~m=0

· =

Λ∑
mx=0

Λ∑
my=0

Λ∑
mz=0

·

p
~i
~m (~r) = pimx (x) pjmy (y) pkmz (z) , (2.15)

where pisls (s) is the Legendre polynomial of order ls, s = x, y, z normalized on the interval

[sis−1, sis ]. See section A.1 for a precise definition.

2.3.1 Diamond Difference Type Methods

The diamond difference (DD) method is the most commonly known and used spatial discretiza-

tion method for the SN equations. There exist an extensive body of literature concerned with

the Diamond Difference method in various dimensional Cartesian geometries (among others):

[32], [33], and [34] for slab geometry, [9] and [18] for 2D Cartesian geometry, and [23] for

3D Cartesian geometry. In two-dimensional Cartesian geometry, Lathrop [9] derives the DD
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method by first integrating the SN equations over the extent of a single mesh cell, which yields

a statement of conservation of particles within the mesh cell. For consistency with the proposi-

tion of this work, let us derive the balance equation in 3D Cartesian geometry, i.e. integrating

Eq. 1.5 over the extent of cell ~i:

µn
∆xi

(
ψ̄h,

~i
n,E − ψ̄

h,~i
n,W

)
+

ηn
∆yj

(
ψ̄h,

~i
n,N − ψ̄

h,~i
n,S

)
+

ξn
∆zk

(
ψ̄h,

~i
n,T − ψ̄

h,~i
n,B

)
+ σ

~i
tψ̄

h,~i
n = S̄

~i, (2.16)

where we use the following definitions:

• The cell average angular flux ψ̄h,
~i

n = 1

V~i

(
1, ψh,

~i
n

)
= M

~i
0

{
ψh,

~i
n

}
.

• The total cell average source S̄h,
~i

n = 1

V~i

(
1, Sh,

~i(~r)
)

= M
~i
0

{
Sh,

~i
n

}
known from the previous

inner iteration where S
~i(~r) = q(~r)

4π + σ
~i
s

4πφ
h,~i
N .

• The face average angular fluxes ψ̄h,
~i

n,F =


1

A
~i
F

〈
1, ψhn

∣∣
E
F,−
~i

〉
if EF ∈ EI

1

A
~i
F

〈
1, ψhn

∣∣
E
F,+
~i

〉
if EF ∈ EO

,

• The linear cell dimensions ∆xi = xi − xi−1, ∆yj = yj − yj−1 and ∆zk = zk − zk−1.

The cell balance equation is exact, i.e. it does not encompass any approximation. However,

it also comprises four unknowns, namely the face average fluxes on the three outflow faces and

the cell average angular flux, while only providing one equation to determine them.

In order to close the system of equations, the angular flux is assumed to be a linear function

within the cell Q~i [9]3:

ψh,
~i

n (~r) = αn + βnx+ γny + δnz. (2.17)

Following [9], closure relations are determined via the interpolation problem:

ψh,
~i

n

(
xi + xi−1

2
,
yj + yj−1

2
,
zk + zk−1

2

)
= ψ̄h,

~i
n

ψh,
~i

n (~rF ) = ψ̄h,
~i

n,F , (2.18)

where ~rF is the midpoint of the appropriate face, EF . Strictly speaking, the cell and face

average fluxes are not point values, such that the above equalities hold only up to a second

order error. However, given a smooth underlying solution, the DD method is second order

accurate such that the error introduced in the interpolation problem is consistent with the

overall discretization error. Utilizing Eq. 2.17 in Eqs. 2.18 yields, after some manipulation, the

3The reference makes the same assumption in 2D, i.e. the δnz term is not present.
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Diamond Difference relations:

ψ̄h,
~i

n =
1

2

(
ψ̄h,

~i
n,E + ψ̄h,

~i
n,W

)
=

1

2

(
ψ̄h,

~i
n,N + ψ̄h,

~i
n,S

)
=

1

2

(
ψ̄h,

~i
n,T + ψ̄h,

~i
n,B

)
(2.19)

Hebert[15], [16] extends the DD method to the arbitrary expansion order Λ, where Λ is the

order up to which spatial Legendre moments of the source are retained:

Sh,
~i(~r) =

Λ∑
~m=0

(2mx + 1) (2my + 1) (2mz + 1)Sh,
~i

~m pmx (x) pmy (y) pmz (z) . (2.20)

The Sh,
~i

~m are referred to as the Legendre source moments and can be obtained by:

Sh,
~i

~m = M
~i
~m

{
Sh,

~i(~r)
}
, (2.21)

Hebert’s higher order Diamond Difference method (HODD) uses cell Legendre moments of

the balance relation up to order Λ along with a sufficient number of auxiliary relations to close

the system of equations in a manner very similar to the original DD equations. Following [13],

the moments of the balance equations can be obtained by applying the operator M
~i
~m to Eq.

1.5:

M
~i
~m

{
Ω̂n · ∇ψn + σ

~i
tψn(~r)

}
= Sh,

~i
~m . (2.22)

After considerable manipulations, the ~m-th order Legendre moment of the SN equation can be

obtained:

µn
∆xi

ψhE,~mx − (−1)mx ψhW,~mx − 2

[mx−1
2 ]∑
l=0

(2mx − 4l − 1)ψh~m−(2l+1)êx



+
ηn

∆yj

ψhN,~my − (−1)my ψhS,~my − 2

[
my−1

2

]∑
l=0

(2my − 4l − 1)ψh~m−(2l+1)êy


+
ξn

∆zk

ψhT,~mz − (−1)mz ψhB,~mz − 2

[mz−1
2 ]∑
l=0

(2mz − 4l − 1)ψh~m−(2l+1)êz


+σtψ

h
~m = Sh~m for mx,my,mz = 0, 1, ...,Λ. (2.23)

In Eq. 2.23 the operator
[
mx−1

2

]
denotes the truncated integer value of (mx − 1)/2. For the

sake of lightening the notation, the discrete ordinates index n and the cell index ~i are dropped

in Eq. 2.23 and for the remainder of the HODD discussion. Further, Eq. 2.23 utilizes the

following definitions:
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• The face Legendre order indices ~mx = (my,mz)
T , ~my = (mz,mx)T , and ~mz = (mx,my)

T .

• The cell face moments (using the east surface as example):

ψhE,~mx =

{
1
AE

〈
pmy(y)pmz(z), ψ

h
n

∣∣
EE,−

〉
if EE ∈ EI

1
AE

〈
pmy(y)pmz(z), ψ

h
n

∣∣
EE,+

〉
if EE ∈ EO

.

Similar to the situation that occurred for the derivation of the DD equations, the set of

moments of the balance relation contains more unknowns than equations, specifically (Λ +

1)3 + 3(Λ + 1)2 unknowns and only (Λ + 1)3 equations. Hebert ([15], [16]) merely states the

following auxiliary relations for the HODD method of order Λ ∈ even:

1

2

(
ψhE,~mx + ψhW,~mx

)
=

Λ∑
mx=0,even

(2mx + 1)ψh~m, for my,mz = 0, 1, ..,Λ,

1

2

(
ψhN,~my + ψhS,~my

)
=

Λ∑
my=0,even

(2my + 1)ψh~m, for mx,mz = 0, 1, ..,Λ,

1

2

(
ψhT,~mz + ψhB,~mz

)
=

Λ∑
mz=0,even

(2mz + 1)ψh~m, for mx,my = 0, 1, ..,Λ, (2.24)

and Λ ∈ odd:

1

2

(
ψhE,~mx − ψ

h
W,~mx

)
=

Λ∑
mx=1,odd

(2mx + 1)ψh~m, for my,mz = 0, 1, ..,Λ,

1

2

(
ψhN,~my − ψ

h
S,~my

)
=

Λ∑
my=1,odd

(2my + 1)ψh~m, for mx,mz = 0, 1, ..,Λ,

1

2

(
ψhT,~mz − ψ

h
B,~mz

)
=

Λ∑
mz=1,odd

(2mz + 1)ψh~m, for mx,my = 0, 1, ..,Λ, (2.25)

but does not provide a rigorous derivation for their particular form. However, following the

example in [9] for DD in 2D Cartesian geometry and [34] for an arbitrary order DD scheme in

slab geometry, Hebert’s extension can be derived by assuming the flux to have a polynomial
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flux shape of order Λ + 1:

ψh (~r) =
Λ∑
~m=0

α~mpmx(x)pmy(y)pmz(z) +
Λ∑

~mx=0

αΛ+1,my ,mzpΛ+1(x)pmy(y)pmz(z)

Λ∑
~my=0

αmx,Λ+1,mzpmx(x)pΛ+1(y)pmz(z)

Λ∑
~mz=0

αmx,my ,Λ+1pmx(x)pmy(y)pΛ+1(z). (2.26)

For the purpose of deriving the auxiliary relations Eqs. 2.24 and 2.25, the assumed shape

Eq. 2.26 is required to match the cell Legendre moments and the face Legendre moments on

all faces. The complete proof is conducted in Sec. B.1. It is important to point out that

the interpolation does not enforce pointwise flux continuity across the cells’ interfaces. This is

illustrated for the HODD-0, i.e. the DD, method: The flux on the faces is a linear function, but

only the averages and not the slopes of the fluxes on the exterior and interior trace are forced

to match during the interpolation procedure and thus pointwise continuity is not enforced.

Even though the interpolation procedure does not enforce continuity between cells, it imposes

a significant coupling of the inflow, outflow and nodal flux moments within each cell.

The DD method and its generalizations were subject to both theoretical and numerical in-

vestigations in slab and multi-dimensional Cartesian geometries. However, the results obtained

for slab geometries do not carry over to multi-dimensional geometries because of the lack of

smoothness of the exact solution in multi-dimensional Cartesian geometries.

The DD method in multi-dimensional Cartesian geometries is second order accurate if the

underlying exact solution features bounded third partial derivatives[35]. However, as demon-

strated in Ref. [20], realistic configurations provide, at most, bounded first partial deriva-

tives such that the theoretical a-priori error estimate in [35] does not hold in practice. Later,

Larsen[18] showed numerically for a simple test problem that the DD method in fact does not

exhibit second order accuracy for a problem that features bounded first partial derivatives when

measuring the error in a discrete 2-norm. However, integral quantities such as region-integrated

fluxes/reaction rates or the multiplication factor converge with the theoretically predicted sec-

ond order.

Building on Larsen’s work, Azmy[21], and Duo, and Azmy([1], [22]) demonstrated on vari-

ations of Larsen’s benchmark that DD, along with two other constant spatial approximations

of the SN equations (AHOTN-0 and AHOTC-0), exhibits observed orders of accuracy that (1)

depend on the applied error norm and (2) on the smoothness of the underlying exact solution

of the SN problem. Moreover, in the case of a discontinuous angular flux, all three methods fail

to converge cell-wise to the exact solution, i.e. some cells do not converge to the exact solution.
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The early popularity of the DD method can be greatly attributed to the prospect of its

second-order accuracy, even though only the average source (i.e. no higher order moments)

is retained. While other schemes feature that same property (AHOTN-0 in multi-dimensional

Cartesian geometries and both AHOTN-0 and the step characteristic method in slab geometry),

it can be shown that all of them are asymptotically, i.e. in the limit of optically small mesh

cells, equivalent to the DD method. In multi-dimensional geometries, the DD method is also

inexpensive when compared with other constant approximation methods.

However, the downside of the DD method is that it can produce negative cell average angular

fluxes (and potentially scalar fluxes) if the cell optical thickness t
~i
n,x =

σ
~i
t∆xi
2µn

(in the x-dimension,

analogous definitions apply for the y and z-dimension) exceeds a value of two[23]. While some-

times tolerable, negative fluxes can lead to instability/failure of acceleration procedures[9], or

failure of subsequent models involving different physics that are driven by the neutron transport

solution.

Reed[36] associates discretization methods that enforce flux continuity with poor behavior

in optically thick regions, namely oscillations and occurrence of negative cell average fluxes.

Even though he wrongly classifies the DD method as continuous by extending its properties

from slab geometry to multidimensional geometries, it holds true for DD (and also for HODD)

that more coupling in between cells is enforced (see subsection 2.4.1) than e.g. for discontinuous

FEM methods, which leads to the general lack of positivity and robustness. While methods that

enforce less rigidity in the cell-to-cell solution are less prone to negative solutions, they do not

necessarily guarantee positive solutions: In fact, strictly positive schemes all feature an accuracy

less than second order. In conclusion, the HODD method is expected to be more accurate than

e.g. the DGFEM method given the same source expansion in smooth, well resolved regions,

but to fail in optically unresolved, non-smooth, or strongly heterogeneous regions.

The relationship of the HODD method with the general class of Discontinuous FEM meth-

ods, i.e. nodal methods, is further discussed in section 2.4.

2.3.2 The Discontinuous Galerkin Finite Element Method (DGFEM)

The discontinuous Galerkin finite element method (DGFEM) uses identical polynomial test

and trial function spaces that are typically substituted into the weak form and tested against

all members of the test space to obtain a per-cell system of equations. Following [12] to obtain

a compact expression of the DGFEM equations let the members of the test/trial space in cell

~i be collected in the vector ~f
~i and the set of unknown expansion coefficients be collected in

~ψ
~i. In addition let the source be expanded in the set of trial functions such that the flux and

source expansions within cell ~i are given by ψh,
~i

n (~r) =
(
~f
~i
)T

~ψ h,~i
n and Sh,

~i (~r) =
(
~f
~i
)T

~Sh,
~i.
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Subsequently the flux and source expansions are substituted into Eq. 2.12:

−Ω̂n

(
∇~f, ~f T

)
︸ ︷︷ ︸

D

~ψ h,~i
n +

(
~f, ~f T

)
︸ ︷︷ ︸

M

[
σt ~ψ

h,~i
n − ~Sh,

~i
]

+
∑
EO

n̂TF Ω̂n

〈
~f (~rF ) , ~f T (~rF )

〉
F︸ ︷︷ ︸

EF

~ψ h,~i
n =

−
∑
EI

n̂TF Ω̂n

〈
~f (~rF ) ,

(
~f
~i′
)T

(~rF )

〉
F︸ ︷︷ ︸

EF

~ψ h,~i′
n , (2.27)

where the superscript ~i′ denotes the appropriate upstream cell and D, M and EF are the

stiffness, mass and edge matrices, respectively. The question at hand for deriving a DGFEM

method is which polynomial function space to use. From a theoretical point of view, i.e.

disregarding its numerical implementation, it is irrelevant which explicit basis functions are

used to describe a particular function space: As long as two function spaces have an identical

span, the results of the respective DGFEM computations are equivalent[10]. However, the user

still has to select the order and the family of the function space: We adopt the notation where

the order indicates the highest occurring power of the spatial variables x, y and z, while the

family is classified by which polynomial cross-terms are retained for a given order[28]. The

following discussion introduces two families of function spaces: the complete and the Lagrange4

families.

The DGFEM method for discretizing the SN equations was first suggested by Reed and Hill

[36] for two-dimensional triangular cells using a basis of Lagrange polynomials: Each Lagrange

basis function is associated with a support point at which its value is unity while it assumes

a zero value at all other support points. The unknowns in Reed’s methods are then the flux

values at the support points and the method’s order is related to the number of support points

within a single cell. For the DGFEM scheme of order Λ Reed’s scheme features L = (Λ+1)(Λ+2)
2

distinct support points:

ψh,
~i

n (x, y) =
L∑
l=1

ψhn (~rl) dl (~r) (2.28)

where dl is the Lagrange polynomial at support point ~rl (see section A.2). As this work is

concerned with Cartesian geometries we refer to [36] for more information on how to place

support points within the cell. Reed[36] also gives an alternative monomial form of his Lagrange

basis which shows that the highest mixed moment term (e.g. the x·y for Λ = 1) is not retained on

triangular geometries. Later, Wang[12] derived a DGFEM method also for triangular geometry

suitable for hp-refinement by using a hierarchical basis (i.e. his basis functions are neither

monomials nor Lagrange polynomials). While the specifics of the derivation are not important

for this work it is important that again the number of independent basis functions is L =

4Lagrange type does not imply that Lagrange polynomials are used.
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(Λ+1)(Λ+2)
2 . On three-dimensional Cartesian meshes Evans implements two families of DGFEM

methods into the transport code DENOVO[24]. The first DGFEM methods which he refers to

as linear discontinuous (LD) method uses the following approximation for the angular flux:

ψ
~i,h
n (~r) =

∑
m≤1

ψ
~i,h
~m p~m (~r) , (2.29)

where m = mx + my + mz. Reeds’, Wang’s and Evan’s LD method are all examples of the

complete DGFEM family[28].

In two-dimensional Cartesian geometry Gastaldo[37] derived a DGFEM scheme of arbitrary

order Λ which retains all cross moments, i.e. for Λ = 1 the trial and test spaces would com-

prise the x · y term. Along the same line, yet limited to Λ = 1, is Evans’ second DGFEM

implementation in DENOVO which uses the following function space:

ψ
~i,h
n (~r) =

1∑
mx=0

1∑
my=0

1∑
mz=0

ψ
~i,h
~m p~m (~r) . (2.30)

Evans refers to this DGFEM method as the tri-linear discontinuous method. Gastaldo’s and

Evan’s TLD methods are examples of the Lagrange DGFEM family. Note, that the term

Lagrange does not imply that Lagrange polynomials are employed; the name originates from

the original construction of the Lagrange set: Use Lagrange polynomials to create a function

space per dimension, i.e. in x, y and z direction. This is achieved by separately distributing

the support points within the one-dimensional x, y and z ranges, then creating the 3D function

space as the outer product of the resulting one-dimensional function spaces.

In summary two families of DGFEM function spaces are mostly used in discretizing the

spatial variable in the SN approximation of the transport equation: (1) the complete family

and (2) the Lagrange family. When expressed in Legendre polynomials up to order Λ the

approximation of the angular flux within a mesh cell for the complete and the Lagrange set can

be expressed as follows:

ψ
~i,h
n (~r) =

∑
m≤Λ

ψ
~i,h
~m p~m (~r) , (2.31)

and

ψ
~i,h
n (~r) =

Λ∑
mx=0

Λ∑
my=0

Λ∑
mz=0

ψ
~i,h
~m p~m (~r) , (2.32)

respectively.

The following observations are now in order:
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• For a given order Λ the Lagrange set has more unknowns per mesh cell. Therefore, it is

expected to be more accurate but also more expensive. The question at hand is which of

the two families features a superior computational efficiency.

• Assume that we formulate our function spaces such that we solve for point values of

the flux, i.e. we use Lagrange polynomials as basis functions. Then, in two-dimensional

triangular geometry and three-dimensional tetrahedral geometry the complete basis would

require one flux value per corner point. The Lagrange basis would introduce more degrees

of freedom that are not associated with the flux values in the corner points. In two-

dimensional and three-dimensional Cartesian geometry the Lagrange family would result

in one flux value per corner point. The complete basis would result in less degrees of

freedom. For Λ = 1 for example, the Lagrange function space seems for more natural

for Cartesian meshes, while the complete family appears to be a more natural choice for

triangles/tetrahedra.

• Adams[7] finds that the linear order Lagrange spaces on Cartesian grids and the linear

order complete sets on triangular and tetrahedral grids (but not the other way around)

feature properties inherent in their test/trial spaces that allow them the resolution of the

thick diffusion limit on the respective grids.

The idea of reducing the number of polynomial cross moments is neither new nor restricted

to the DGFEM method, the same idea will return for the transverse moment based method. It

seems beneficial to us to compare the efficiency of the complete and Lagrange families since it

is not clear which will be more efficient for a fixed order Λ: While the Lagrange family is more

accurate, the complete family is expected to execute faster.

In two-dimensional Cartesian geometry and in the absence of solution discontinuities Lesaint

and Raviart[38] demonstrated that the order of accuracy of the Lagrange DGFEM set of order Λ

is O
(
hΛ+1

)
in a continuous two norm. Less important for this work, but necessary to appreciate

the results of the following reference Richter[39] showed that the same order holds true in two-

dimensional triangular geometry. Both references note though that the observed accuracy is

limited by the regularity of the solution, i.e. the expected accuracy is O
(
hmin(Λ+1,r)

)
with

r being the regularity index of the solution. Wang and Ragusa[11] performed an extensive

convergence study using complete sets of order Λ for Λ = 1, .., 4 in two-dimensional triangular

geometry for test problems designed in the spirit of Duo and Azmy[22] whose exact solution

features a limited degree of smoothness. The level of smoothness is referred to as C0 and C1

denoting configurations that feature discontinuous angular fluxes and discontinuous first partial

derivatives of the angular fluxes, respectively. A more formal definition of the smoothness Cp

is given in section 3.2. The purpose of their study is to show by numerical experiment that
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the a-priori error estimates in [38] and [39] are observed. Their findings can be summarized as

follows:

• If the mesh is aligned with the singular characteristic line (no cell is intersected by SC)

and the problem is purely absorbing the theoretical order of accuracy is observed. This

could be expected since the exact solution within each cell is smooth.

• Regardless of scattering, if the mesh is not aligned with the SC the observed orders of

accuracy are 1/2 and 3/2 for a C0 and C1 problem, respectively. This is expected because

r is 1/2 and 3/2 for the C0 and C1 problem, respectively.

• If the mesh is aligned, the medium scatters and the boundary conditions render the

problem C0 then the observed accuracy is 3/2. Wang did not explain this phenomenon.

We propose the following explanation: The uncollided flux does not feature a discontinuity

within any of the cells since the mesh is aligned with the SC. However, the first collided

source creates a collided flux that features discontinuous partial derivatives in a manor

very similar to Duo’s second MMS test case in Table 3.2. Therefore, the flux within each

cell does not feature continuous first partial derivatives and thus the observed accuracy

is limited by order 3/2.

Wang also applied the DGFEM method to more realistic problems (EIR-2 benchmark, Takeda

and C5G7) in [12] demonstrating that integral quantities such as the eigenvalue (Takeda) and

region integrated flux (EIR-2) enjoy convergence close to (and approaching) their theoreti-

cally predicted rates; as a corollary the increased observed accuracy makes high-order methods

attractive. In fact, Wang plots the error in the region integrated flux (eigenvalue) vs. the

execution time for the EIR-2 (Takeda) problem, respectively, and demonstrates that the most

efficient method is the DGFEM-4 method.

The DGFEM-1 method is much less prone to negative fluxes than the DD method, yet

negative fluxes can arise[23]. This behavior may be attributed to DGFEM-1 imposing less

restrictions on inter-cell continuity than DD. In fact, the whole family of DGFEM methods

does not constrain the inter-cell jump at all while the HODD family enforces continuity in an

integral sense. This might also lead to an improved behavior at material interfaces featuring

vastly different total cross sections where near-discontinuities of the exact angular flux along

the characteristic can occur. These near-discontinuities can lead to spurious oscillations in the

computed solution.

The TLD (or Lagrange type of order 1) method also allows the resolution of the thick

diffusion limit on multi-dimensional Cartesian meshes even though the limiting discretization

of the Diffusion equation might not be good since it lacks robustness and accuracy (negative

solutions, discontinuities, oscillations, poor approximations to boundary conditions) [40],[7].
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Within both references Adams suggests lumping the mass, surface and stiffness matrices (fully

lumped DGFEM method) which yields a better thick diffusion limit.

In conclusion, the DGFEM method is robust (allowing for large inter-cell jumps), allows

the resolution of the diffusion limit in certain cases and is simple since it uses polynomials for

the interpolation thus yielding a potential advantage regarding execution time when compared

to non-polynomial methods. However, it remains to be determined if it is less accurate than

the HODD method of the same order.

2.3.3 Simple Corner Balance Method

The simple-corner balance (SCB) method on hexahedral grids introduced by Adams in his

seminal work in [40] and [7] is a relative of the Lagrange type DGFEM of order one, i.e. the

TLD method. It can be derived from the pertaining DGFEM equations by a process referred

to as lumping applied to all mass, stiffness and face matrices. The process of lumping reduces

the accuracy of the method but increases its robustness in the diffusion limit, a feature that

ranks higher in the radiative transfer community than accuracy[8].

The process of lumping can only be applied to the particular form of the TLD equations

that is obtained when a cardinal set of basis functions is utilized, i.e. using the Lagrange

interpolatory functions defined in section A.2. The eight corner points of the hexahedral mesh

cells are used as the support points for the Lagrange interpolants such that the eight basis

functions are given by:

dix,iy ,iz =
x− xi′x
xi′x − xix

y − yi′y
yi′y − yiy

z − zi′z
zi′z − ziz

, (2.33)

where

ix = i or i− 1

iy = j or j − 1

iz = k or k − 1

(2.34)

and i′k is the respective other choice.

In the case the SCB the components of the vector ~ψ h,~i
n are the point flux values at the

corners of the hexahedron. We shall order the corners according to the numbering scheme in

Fig. 2.1. Substituting dix,iy ,iz into the weak form Eq. 2.9 results in the Lagrange type DGFEM
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Figure 2.1: Numbering of the corners and edges of a mesh cell.

of order one to obtain a linear system of equations analogous to equation 2.27:

− µnDx
~ψ h,~i
n − ηnDy

~ψ h,~i
n − ξnDz

~ψ h,~i
n + µnEE

~ψ h,~i
n + ηnEN

~ψ h,~i
n + ξnET

~ψ h,~i
n + σtM~ψ h,~i

n

= M~S h,~i
n + µnEW

~ψ h,~i′
n + ηnES

~ψ h,~i′′
n + ξnEB

~ψ h,~i′′′
n , (2.35)

where M, Dx, and EE , etc. are given explicitly in the Mathematica notebooks in section B.2

and~i′ =~i− sg(µn)êx, ~i′′ =~i− sg(ηn)êy and~i′′′ =~i− sg(ξn)êz. The SCB equations are obtained

from Eq. 2.35 by lumping the mass, stiffness and face matrices.
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Mass Lumping

Instead of computing the mass matrix as prescribed in Eq. 2.27 it is approximated by first

evaluating the flux expansion at the support point of the r-th weight function:

(M)r,c = (fr, fc)→ fc (~rr) (fr, 1) = δr,c (fr, 1) = (ML)r,c , (2.36)

where δr,c is the Kronecker delta. Lumping the mass matrix amounts to summing all the

contributions on the off-diagonal into the diagonal elements. The lumped mass matrix for the

discussed TLD scheme is listed in the form of a Mathematica notebook in section B.2.

Lumping of Surface Terms

The lumping of the surface terms proceeds similarly as the mass matrix lumping by evaluating

the flux expansion over face F at the support point of the r-th weight function:

(EF )r,c = 〈fr (~rF ) , fc (~rF )〉F → δr,c 〈fr, 1〉F = (EF,L)r,c . (2.37)

The lumped east face matrix for the discussed TLD scheme is listed in the form of a Mathematica

notebook in section B.2.

Lumping of Stiffness Terms

The lumping of the stiffness term differs from the straight-forward lumping process applied to

face and mass matrices. First, integration by parts is used to derive the following identity:

−µk,n (Dk + Ek+ −Ek−) = µk,n

(
~f,∇k ~fT

)
. (2.38)

Then, instead of performing the integration in Eq. 2.38, the lumping procedure evaluates the

gradient term at the support points of the r-th basis function ~rr:(
~f,∇k ~fT

)
→ ∇k ~f (~rr)

(
~f, 1
)
. (2.39)

Finally, Eqs. 2.38 and 2.39 are used to compute the lumped stiffness term:

Dk,L = Ek+,L −Ek−,L −
(
~f,∇k ~fT

)
L
. (2.40)

As an example the lumped stiffness matrix for the x-direction is listed in section B.2.
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SCB Equations

The SCB equations are obtained as the fully lumped version of the TLD equations. The

method’s name Simple Corner Balance is attributed to the common interpretation of the re-

sulting equations as holding a balance over one of the eight subvolumes associated with the

cell’s corners. The unknown corner flux values are interpreted as the volume averages within

these subvolumes. For the first corner the equations for Ω̂n in the first angular quadrant are:

µn
∆yj∆zk

4

ψ h,~i
n,1 + ψ h,~i

n,2

2
− ψ h,~i−êx

n,2

+ ηn
∆xi∆zk

4

ψ h,~i
n,1 + ψ h,~i

n,4

2
− ψ h,~i−êy

n,4


+ξn

∆xi∆yj
4

ψ h,~i
n,1 + ψ h,~i

n,5

2
− ψ h,~i−êz

n,5

+ σt
V
~i

8
ψ h,~i
n,1 =

V
~i

8
S h,~i
n,1 , (2.41)

where ψ h,~i
n,l =

(
~ψ h,~i
n

)
l
. In general, the SCB equations can be cast into the form given by [40]:

µn
∆yj∆zk

4

ψ h,~i
n,l + ψ h,~i

n,lz

2
− ψ h,~i−sµêx

n,lz

+ ηn
∆xi∆zk

4

ψ h,~i
n,l + ψ h,~i

n,ly

2
− ψ h,~i−sη êy

n,ly


+ξn

∆xi∆yj
4

ψ h,~i
n,l + ψ h,~i

n,lx

2
− ψ h,~i−sξ êz

n,lz

+ σt
V
~i

8
ψ h,~i
n,l =

V
~i

8
S h,~i
n,l , (2.42)

where l = 1, ..., 8 and lx, ly and lz is the number of the neighboring corner along the x, y and

z directions, respectively, for example if l = 4 then lx = 3, ly = 1 and lz = 8. The signs of the

direction cosines µn, ηn and ξn are denoted by sµ, sη and sξ, respectively.

To the author’s knowledge little is known about the accuracy and efficiency of the SCB

method when compared to the DGFEM methods that it is related to. This might originate

in the fact, that SCB was developed primarily with highly diffusive problems in mind, where

it is uncommon to have spatially resolved cells in all energy groups and domain regions. The

notion of accuracy as understood in the realm of error estimation and analysis requires at least

that cells are reasonably resolved which is almost never satisfied for radiative transfer problems.

Within this work, a comparison of the SCB and other selected methods will show how much

accuracy is lost in the lumping process.

2.3.4 Transverse Moment Type Methods

The transverse moment based (TMB) methods are understood in this work in the spirit of Ref.

[13] and [14]. In neutron transport theory this type of method is traditionally labeled nodal

method; in fact the TMB methods are nodal methods as defined in this work, but in contrast
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to the traditional nomenclature our definition is more general: All TMB methods are nodal

methods but not all nodal methods are based on transverse averaging.

TMB methods can be derived for arbitrary expansion orders with the order Λ typically but

not always referring to the source expansion as already discussed in Eq. 2.20. Similar to the

DD-type methods TMB methods constitute the per mesh-cell system of equations from the

spatial Legendre moments of the transport equations Eq. 2.23 augmented by closure/auxiliary

relations derived via the transverse moment procedure, followed by an approximate direction-

by-direction analytical solution of the resulting 1D transport equation.

TMB methods were originally devised to enable accurate solutions on coarse spatial meshes

[14] thus potentially increasing solution efficiency. Common methods at the time such as DD

failed miserably because of negative solutions or lack of accuracy on coarse meshes. The idea

of TMB methods is to develop closure relations to Eqs. 2.23 that resemble the physics of the

transport process closely and the tool to achieve this goal is the transverse moment formalism.

The development of the TMB methods is now divided into the AHOTN[13] methods and two

additional linear TMB approximations, namely the linear nodal(LN) and the linear-linear (LL)

methods[14]. Similar to the discussion of the HODD method the h and ~i superscripts of ψ are

omitted.

AHOTN

The arbitrarily high-order transport method of the nodal type (AHOTN) is comprehensively

developed in [13] leading to a very compact weighted diamond difference (WDD) representation

of the per-cell set of equations. For three-dimensional Cartesian geometry the SN equations

Eq. 1.5 are multiplied by pmy(y)pmz(z) and then integrated in the y and z directions over the

extent of a single mesh cell, i.e. the operator

M
~i
~mx {·} =

1

∆yj∆zk

∫ yj

yj−1

dy pmy (y)

∫ zk

zk−1

dz pmz (z) (2.43)
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is applied to the SN equations Eq. 1.5. This yields the transverse moments equations for the

x-direction:

µn
d

dx
ψ~mx(x) + σtψ~mx(x) = S~mx(x)

− ηn
∆yj

ψN,mz(x)− (−1)my ψS,mz(x)− 2

my−1

2∑
l=0

(2my − 4l − 1)ψ~mx−(2l+1)ê2(x)


︸ ︷︷ ︸

χmy,y(x)

− ξn
∆zk

ψT,my(x)− (−1)mz ψB,my(x)− 2

mz−1
2∑
l=0

(2mz − 4l − 1)ψ~mx−(2l+1)ê3(x)


︸ ︷︷ ︸

χmz,z(x)

for my = 0, ...,Λ, mz = 0, ...,Λ, (2.44)

where ψF,m is a transverse face moment defined by (using ψN,mz(x) as example):

ψN,mz(x) =
1

∆zk

∫ zk

zk−1

dz pmz(z)ψ (x, yj , z) ,

ψ~mx(x) is the transverse nodal moment defined by:

ψ~mx(x) =
1

∆zk∆yj

∫ yj

yj−1

dy

∫ zk

zk−1

dz pmz(z)pmy(y)ψ (~r) .

and χmy ,y and χmz ,z are the transverse leakage terms in the y and z directions, respectively.

Totally equivalent to Eq. 2.44 transverse integrated transport equations can be derived for the

other two directions. Note that so far no approximation has been introduced: Eq. 2.44 is exact

but it constitutes a system of ordinary differential equation in the x variable that is not closed

since (1) it contains the transverse nodal moments and the transverse face moments on the

outflow edges as unknowns and (2) we have not specified how to evaluate the partial source

moments given the limited number of available flux moments. We proceed by formally solving

Eq. 2.44 using the integrating factor 1
µn

exp
(
σtx
µn

)
and integrating over the extent of the mesh

cell in the x-direction:

µn
∆xi

[
exp

(
σtxi
µn

)
ψE,~mx − exp

(
σtxi−1

µn

)
ψW,~mx

]
=

1

∆xi

∫ xi

xi−1

dx exp

(
σtx

µn

)
S~mx(x)

− 1

∆xi

∫ xi

xi−1

dx exp

(
σtx

µn

)(
ηn

∆yj
χmy ,y(x) +

ξn
∆zk

χmz ,z(x)

)
. (2.45)
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Similar to Eq. 2.44 Eq. 2.45 is under-determined. Closure is provided by expanding the

exponential in the integrals into a finite series of Legendre polynomials[13]:

exp

(
σtx

µn

)
=

Λ∑
mx=0

en,mxpmx(x).

Substituting the above approximation into Eq. 2.45 results in the following expression:

µn
∆xi

[
exp

(
σtxi
µn

)
ψhE,~mx − exp

(
σtxi−1

µn

)
ψhW,~mx

]
=

Λ∑
mx=0

en,mxS~m(x)

−


Λ∑

mx=0

en,mx
ηn

∆yj

ψhN,~my − (−1)my ψhS,~my − 2

my−1

2∑
l=0

(2my − 4l − 1)ψh~m−(2l+1)ê2


+

Λ∑
mx=0

en,mx
ξn

∆zk

ψhT,~mz − (−1)mz ψhB,~mz − 2

mz−1
2∑
l=0

(2mz − 4l − 1)ψh~m−(2l+1)ê3

 .(2.46)

The last term (in parenthesis) on the right hand side of Eq. 2.45 can be manipulated by using

Eqs. 2.23 yielding:

µn
∆xi

[
exp

(
σtxi
µn

)
−

Λ∑
mx=0

en,mx

]
ψhE,~mx −

[
exp

(
σtxi−1

µn

)
−

Λ∑
mx=0

(−1)mx en,mx

]
ψhW,~mx

−
Λ∑

mx=0

en,mx

σtψh~m − 2µn
∆xi

mx−1
2∑
l=0

(2mx − 4l − 1)ψh~m−(2l+1)ê1

 = 0. (2.47)

After several straight forward but lengthy manipulations the WDD form of the AHOTN closure

relations can be obtained:

1 + αn,x
2

ψhE,~mx +
1− αn,x

2
ψhW,~mx =

Λ∑
mx=0,even

(2mx + 1)ψh~m +
Λ∑

mx=0,odd

(2mx + 1)αn,xψ
h
~m,

for my,mz = 0, 1, ..,Λ, (2.48)

where the spatial weight αn,x is given by:

αn,x =

2µn
σt∆xi

[
cosh σt∆xi

2µn
−

Λ∑
mx=0,even

en,mx

]
2µn
σt∆xi

[
sinh σt∆xi

2µn
−

Λ∑
mx=1,odd

en,mx

] . (2.49)
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Analogous WDD closure relations exist for the y and z directions. The per-cell system

of equations for the AHOTN method is comprised of the spatial moments of the transport

equation Eq. 2.23 along with the auxiliary relations Eq. 2.48 for all three dimensions x, y and

z. Two things should be noted at this point: (1) the transport physics incorporated via the

transverse averaging formalism gets lumped into the spatial weights, otherwise the AHOTN

system of equations resembles the standard WDD equations and (2) in the limit of infinitely

small cells the AHOTN method becomes identical to the HODD method (pertinent proof section

B.4). Thus, on sufficiently fine meshes the solutions obtained with the AHOTN method are

indistinguishable from the HODD computed results and consequently the difference of the two

methods vanishes and the observed order of accuracy are thus identical.

As the AHOTN method can be conveniently cast into a WDD form with all the AHOTN

specifics lumped into the spatial weights, a standard WDD solver can be used to solve the

per-cell AHOTN system of equations. Typically, the WDD relations Eq. 2.48 are solved for

the outflow face moments and substituted into the nodal balance relations Eq. 2.23 which are

then solved for the (Λ + 1)3 unknown nodal flux moments (NEFD algorithm), [13].

The specific value of the weights computed for a certain optical thickness is the only dif-

ference between AHOTN and an arbitrary WDD scheme. Therefore, the spatial weights and

their evaluation play a pivotal role in the AHOTN method. For AHOTN there exists one

distinct weight per angular direction and spatial dimension. The numerical evaluation of Eq.

2.49 can be performed via a recursion, but Zamonsky[41] found that the spatial weights suffer

from round-off instability for optically thin cells and large Λ. He resolves this problem by using

asymptotic expansions of the spatial weights for optically thin cells:

αn =


t
~i
n

2Λ+3 Λ even
2Λ+3

t~in
Λ odd

(2.50)

An open question regarding the computation of the spatial weights is how much computational

effort, compared to the WDD solution, is necessary to compute the spatial weights in a stable

and accurate manner.

The AHOTN method in 2D Cartesian geometry is tested in [13] to determine which expan-

sion order results in the most efficient algorithm with the result that the efficiency increases

monotonically up to order five. However, Ref. [13] does not examine the performance for a

strongly heterogeneous test problem where it is impossible to utilize large cells thus placing

higher-order methods at a relative advantage.

Later Azmy[21] and Duo and Azmy[22] used the AHOTN-0,1,2 method to solve variations

of Larsen’s problem (see also section 2.3.1) and showed by numerical experiment that AHOTN-

0 is asymptotically equivalent to DD thus featuring the same observed order of accuracy. A
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comparison of the magnitude of the error on coarser, non-asymptotic meshes between AHOTN-

0 and DD is neither performed in [21] nor [22] even though the accuracy on realistic, non-

asymptotic meshes is more important in practice than the behavior in the asymptotic regime.

The Linear Nodal and Linear-Linear Methods

For practical applications it is expected that a linear TMB approximation is a good compromise

for achieving high accuracy at a reasonably short execution time, thus resulting in improved

computational efficiency. In Ref. [14] two methods, the linear nodal (LN) and the linear-linear

(LL) method, are compared to the AHOTN-1 method; both methods are linear TMB methods

but retain less fidelity than the AHOTN-1 method for the purpose of reducing the execution

time and required memory.

The LN and LL methods both utilize moments of the balance equations, Eq. 2.23, satisfying

mx + my + mz ≤ 1 augmented by three WDD equations per dimensions. Thus, the full set of

LN and LL equations comprises four balance relations and twelve WDD equations. Within this

subsection the WDD equations for the LL and LN method are derived in three-dimensional

Cartesian geometry. In particular, the WDD equations for the x-direction will be developed

for each of these two methods, but equivalent equations can be derived using the exact same

procedure for the y and z-direction.

Applying the operator Eq. 2.43 to the transport equation leads to an ordinary differential

equation for ψh,
~i
~mx(x):

µn
dψh,

~i
~mx

dx
+ σtψ

h,~i
~mx(x) = S

~i
~mx − χ

y
my ,mz(x)− χzmz ,my(x), (2.51)

where χkmk,mp(x) with k = y or k = z is given by:

χkmk,mp(x) =
µn,k
∆k

ψh,+kmp − (−1)mkψh,−kmp − 2

[(mk−1)/2]∑
l=0

(2mk − 4l − 1)ψh,
~i
~mx−(2l+1)êk

 , (2.52)

and +k = N, T and −k = S, B. In addition, the indices mk and mp are defined as follows:

if k = y then mk = my and mp = mz, while for k = z we have mk = mz and mp = my. For

making Eq. 2.51 amenable to a solution χkmk,mp(x)’s dependence on x is approximated by:

χk0,mp(x) ≈
µn,k
∆k

[
ψh,+k0,mp

− ψh,−k0,mp

]
+

3µn,k
∆k

[
ψh,+k1,mp

− ψh,−k1,mp

]
p1(x)

χk1,mp(x) ≈
µn,k
∆k

[
ψh,+k0,mp

+ ψh,−k0,mp
− 2ψ̄h,

~i
]

+ λ
3µn,k
∆k

[
ψh,+k1,mp

+ ψh,−k1,mp
− 2ψh,

~i
1,0,0

]
p1(x), (2.53)
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where λ = 0 for the LN method and λ = 1 for the LL method. Further, the source is approxi-

mated by:

S
~i
~mx ≈ S

~i
0, ~mx + 3νS

~i
1, ~mxp1(x), (2.54)

where ν = 1 except if my = mz = 1, then ν = 0. Solving the ordinary differential equation Eq.

2.51 using exp
(
xσt
µn

)
as integrating factor leads to:

exp
(
t
~i
n,x

)
ψh,

~i
~mx,E − exp

(
−t~in,x

)
ψh,

~i
~mx,W = 2 sinh

(
t
~i
n,x

){S~i0, ~mx
σt
−
κy0,my ,mz

2t~in,y
−
κz0,mz ,my

2t~in,z

}

+ 2

cosh
(
t
~i
n,x

)
−

sinh
(
t
~i
n,x

)
t~in,x

{ν S~i1, ~mx
σt
−
κy1,my ,mz

2t~in,y
−
κz1,mz ,my

2t~in,z

}
,

(2.55)

where:

κkmx,mk,mp = ψh,+k
~mk
− (−1)mkψh,−k

~mk
− 2

[(mk−1)/2]∑
l=0

(2mk − 4l − 1)ψh,
~i
~m−(2l+1)êk

. (2.56)

Using Eq. 2.23, the source and transverse leakage terms in Eq. 2.55 can be replaced by volume

flux moments and face flux moments on the East and West faces:

my = mz = 0 :

1 + αn,0,x
2

ψh,E~mx +
1− αn,0,x

2
ψh,W~mx = ψ̄h,

~i + 3 αn,0,x ψ
h,~i
1,0,0

mk = 1, mp = 0 :

1 + αn,1,x
2

ψh,E~mx +
1− αn,1,x

2
ψh,W~mx = ψh,

~i
0, ~mx − 3λ

αn,1,x

t
~i
n,k

(
ψh,+k1,0 + ψh,−k1,0 − 2ψh,

~i
1,0,0

)
.

(2.57)

The spatial weight αn,l,x is thereby defined as:

αn,l,x =

[
coth tn,x − 1

tn,x

]
1− νl

tn,x

[
coth tn,x − 1

tn,x

] , (2.58)

where ν0 = 1 and ν1 = 0.

For two-dimensional Cartesian geometry a wealth of literature exists comparing the LL, LN

and AHOTN-1 methods. Reference [14] shows that the first two methods feature two distinct

weights per dimension, per cell and per discrete ordinates while AHOTN-1 only requires the
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computation of a single spatial weight. The difference between the LN and LL method is that

the LL method retains the bilinear leakage component while the LN neglects it. From an

algorithmic (i.e. solution of the local equations within the mesh sweep) point of view the LN

provides the least coupling among the set of equations while the LL has stronger coupling in

the WDD relations than both LN and AHOTN-1 and AHOTN-1 has stronger coupling than

LL and LN in the nodal balance equations. Both LL and LN methods are expected to be less

accurate than the AHOTN-1 method since more approximations are made but the hope is that

they execute faster leading to superior efficiency. Results in [14] comparing the computational

performance of the three methods show that for three test problems the computed results are

very close. Execution times vary somewhat with the general conclusion that LN executes fastest,

AHOTN-1 is the runner-up and the LL method is slowest. As there is no rigorous computation

of the discretization error performed in [14] it is not possible to conclusively decide which

method is the most efficient.

For two-dimensional x-y geometry Walters[42] compares computationally the accuracy of

the DD, LN, LL and two DGFEM methods, namely the linear discontinuous method and what

he refers to as quadratic discontinuous method for a well-logging problem using under-resolved

coarse meshes. The quadratic discontinuous method uses polynomial trial functions up to

order two in x and y directions but neglects all mixed cross moments (even the x · y term).

Walters finds that the LL method is the most accurate of the participating methods followed

by the LN method. The FEM methods are found to be of intermediate accuracy while the

DD methods, due to the large optical cell thickness, yields unacceptable results. Walters does

not rigorously compute the discretization error and also does not measure the execution time

of the participating methods, hence no measure of efficiency can be deduced from the stated

results. Preceding Ref. [42] Walters and O’Dell[43] presented a comparison of the DD, LN and

linear discontinuous method for the ZPPR-7A critical assembly mock up (x-y reactor physics

k-eigenvalue problem). The data provided comprises errors and execution times such that the

efficiency can be inferred. In general, LD executes in about 66% of the execution time necessary

for LN to converge, but LN is more accurate. From the given results, it appears that LN is

more efficient on coarse meshes while LD is more efficient on fine meshes.

2.4 Nodal Finite Element Framework

The DGFEM method naturally is a nodal methods as it satisfies all requirements stated in sec-

tion 2.1 and we readily have the appropriate function spaces available to derive these methods;

in fact we started with the function spaces and derived the methods substituting the function

spaces into the appropriate weak form. However, more traditional methods that even pre-date

the development of a sound theory on nodal methods, can be shown to satisfy all requirements
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stated in section 2.1 and therefore are also nodal methods. Within this section the AHOTN and

HODD are shown to be nodal methods: while the necessary analysis for the AHOTN method

was performed in [1], the findings regarding the HODD method are new. It is not obvious that

HODD and AHOTN belong to the class of nodal methods because it is not straightforward to

determine appropriate test and trial spaces that when substituted into the strong or weak form

return the same set of equations previously derived for each of these methods using physical

arguments. However, apart from missing the appropriate function spaces both HODD and

AHOTN satisfy the following properties:

• The systems of equations that are solved are local to each mesh cell.

• Communication between mesh cells only occurs via the mesh cells’ faces.

• Pointwise continuity of the flux is not enforced.

In the following test and trial functions are derived that yield the HODD and AHOTN equations

when substituted into the strong form of the transport equation. This completes the demon-

stration that HODD and AHOTN are in fact nodal methods. The test and trial spaces can

be used as a post-process to reconstruct the flux within each mesh cell for providing accurate

interpolation formulae across thick mesh cells.

2.4.1 HODD as Petrov-Galerkin FEM

The HODD method can be derived as a discontinuous Petrov-Galerkin FEM (DPGFEM)5 by

choosing suitable test and trial spaces and utilizing them in the strong form of the SN transport

equation Eq. 2.13. For the following derivation of the HODD method as DPGFEM the flux

within a cell is approximated as in Eq. 2.26 and the test space is simply selected to be the

space of all Legendre polynomials of order ~m ≤ Λ:

V = {p~m,mx,my,mz = 0, ...,Λ} . (2.59)

For simplicity let all direction cosines be positive such that the unknown cell quantities in the

traditional balance/auxiliary system of equations are the cell Legendre moments and the face

Legendre moments on the east, north and top faces. The generic expansion coefficients ~α can

5In contrast to DGFEM Petrov-Galerkin FEM do not utilize identical test and trial functions.
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be related to the nodal and face flux moments by using their respective definition:

ψh~m = M~m

{
ψh (~r)

}
ψhE,~mx =

1

AE

〈
pmy(y)pmz(z), ψ

h (~rE)
〉
E

ψhN,~my =
1

AN

〈
pmx(x)pmz(z), ψ

h (~rN )
〉
N

ψhT,~mz =
1

AT

〈
pmx(x)pmy(y), ψh (~rT )

〉
T
. (2.60)

It is easy to show that the following linear combination of trial functions:

ψh (~r) =
Λ∑
~m=0

(2mx + 1) (2my + 1) (2mz + 1)ψh~mp~m(~r)

+
Λ∑

~mx=0

(2my + 1) (2mz + 1)

[
ψhE,~mx −

Λ∑
mx

(2mx + 1)ψh~m

]
pΛ+1(x)pmy(y)pmz(z)

+

Λ∑
~my=0

(2mx + 1) (2mz + 1)

ψhN,~my − Λ∑
my

(2my + 1)ψh~m

 pmx(x)pΛ+1(y)pmz(z)

+

Λ∑
~mz=0

(2mx + 1) (2my + 1)

[
ψhT,~mz −

Λ∑
mz

(2mz + 1)ψh~m

]
pmx(x)pmy(y)pΛ+1(z),

(2.61)

satisfies Eq. 2.60. In order to provide more conditions to make the approximation of Eq.

2.61 amenable to solution we constrain the approximate angular flux to be continuous at the

incoming edge in an integral sense. To this end let the flux on the exterior trace of the incoming

faces be expanded in Legendre polynomials (e.g. for the west face):

ψhW (~rW ) =

Λ∑
~mx=0

(2my + 1) (2mz + 1)ψW,~mxpmy(y)pmz(z). (2.62)

Then for each inflow face we require that (stating as an example only the west face again) the

difference of the interior and the exterior trace is orthogonal to the test space:〈
pmypmz , ψ

h (~rW )− ψhW (~rW )
〉
W

=
〈
pmypmz ,

[[
ψh (~r)

]]
W

〉
W

= 0, for my,mz = 0, ...,Λ.

(2.63)

This condition is essentially the same as used in the derivation of the HODD equations via the

interpolation problem discussed in section 2.3.1. Evaluation of the difference of the exterior
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and interior trace ψh (~rW )− ψhW (~rW ) gives:

ψh (~rW )− ψhW (~rW ) =

Λ∑
~mx=0

(2my + 1) (2mz + 1) pmy(y)pmz(z)
[
(−1)Λ+1 ψhE,~mx − ψW,~mx

]
+

Λ∑
~m=0

(2mx + 1) (2my + 1) (2mz + 1)ψh~m

[
(−1)mx − (−1)Λ+1

]
+ other terms, (2.64)

where “other terms” collects terms that comprise either pΛ+1(y) or pΛ+1(z) and thus are or-

thogonal to the test functions on the west face. The pointwise difference of the interior and

exterior trace is then substituted into Eq. 2.63 giving:

[
(−1)Λ+1 ψhE,~mx − ψ

h
W,~mx

]
+

Λ∑
mx=0

(2mx + 1)ψh~m

[
(−1)mx − (−1)Λ+1

]
= 0, for ~mx = 0..,Λ.

(2.65)

and after some manipulation:

[
ψhE,~mx − (−1)Λ+1 ψhW,~mx

]
=

Λ∑
mx=0

(2mx + 1)ψh~m (−1)Λ+1
[
(−1)Λ+1 − (−1)mx

]
, for ~mx = 0..,Λ

[
ψhE,~mx − (−1)Λ+1 ψhW,~mx

]
=

Λ∑
mx=0

(2mx + 1)ψh~m

[
1 + (−1)Λ+mx

]
, for ~mx = 0..,Λ,

which is identical to the HODD auxiliary relation in the x-direction. Since there are a total of

3 (Λ + 1)2 of the constraints Eq. 2.63 the remaining number of unknowns is (Λ + 1)3. To obtain

equations for these unknowns the strong formulation Eq. 2.13 is used in conjunction with the

test space V. However, as the term coupling in the difference between interior and exterior

trace on the right hand side of Eq. 2.13 is naturally satisfied by ψh due to the constraints Eq.

2.63 we only need to require:

M~m

{
µn
∂ψh

∂x
+ ηn

∂ψh

∂y
+ ξn

∂ψh

∂z
+ σtψ

h (~r) = Sh (~r)

}
, for ~m = 0...,Λ, (2.66)

which when evaluated gives the Legendre moments of the balance relations Eq. 2.23. Therefore,

the system of equations resulting from utilizing Eq. 2.61 in the strong form of the SN equations

under the constraint of integral continuity is identical to the standard HODD set of balance

and auxiliary relations. While the flux is not necessarily continuous across cells, the integral

continuity requirement imposes a great deal of rigidity.
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2.4.2 AHOTN as DPGFEM Method

Duo[44], [1] found that, similar to the HODD method, the AHOTN method can be derived as

a DPGFEM projection using the trial space:

ψh (x, y, z) =

Λ∑
mx=−1

Λ∑
my=0

Λ∑
mz=0

a~mζmx (x) pmy (y) pmz (z)

+
Λ∑

mx=0

Λ∑
my=−1

Λ∑
mz=0

b~mζmy (y) pmx (x) pmz (z)

+
Λ∑

mx=0

Λ∑
my=0

Λ∑
mz=−1

c~mζmz (z) pmx (x) pmy (y)

+

Λ∑
mx=0

Λ∑
my=0

Λ∑
mz=0

d~mpmx (x) pmy (y) pmz (z) , (2.67)

with the unknown expansion coefficients a~m, b~m, c~m and d~m and the function ζk (x)
~i defined as:

ξ
~i
−1 (x) = e−t

~i
n(x̂+1)

ξ
~i
λ (x) = t

~i
n

∫ x̂

−1
e−t

~i
n(x̂−s)Pλ (s) ds

x̂ = sign (µn) 2
x− xi+xi−1

2

∆xi
. (2.68)

The expansion coefficients are further constrained by:

M~m


Λ∑

mx=−1

Λ∑
my=0

Λ∑
mz=0

a~mζmx (x) pmy (y) pmz (z)

 =
d~m

(2mx + 1) (2my + 1) (2mz + 1)

M~m


Λ∑

mx=0

Λ∑
my=−1

Λ∑
mz=0

b~mζmy (y) pmx (x) pmz (z)

 =
d~m

(2mx + 1) (2my + 1) (2mz + 1)

M~m


Λ∑

mx=0

Λ∑
my=0

Λ∑
mz=−1

c~mζmz (z) pmx (x) pmy (y)

 =
d~m

(2mx + 1) (2my + 1) (2mz + 1)
,

(2.69)

such that there are in total (Λ + 1)3 + 3 (Λ + 1)2 independent expansion coefficients. The test

space is identical to the HODD test space outlined in section 2.4.1. Equivalent to the derivation

of the HODD method as DPGFEM the trial space is constrained to satisfy continuity in an

integral sense on the inflow edges which yields the 3 (Λ + 1)2 WDD relations. Substituting
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the trial functions into the strong form Eq. 2.13 and noting that the term accounting for the

difference of exterior and interior traces on the inflow edges vanishes for the constrained trial

space then gives the nodal balance relations Eq. 2.23.

2.5 Summary of Spatial Discretization Schemes

Three different classes of spatial discretization methods for the transport equation were re-

viewed: HODD, DGFEM, and TMB methods, each of which features several sub-classes. A

fourth class of methods, namely the short characteristics methods, is not mentioned because

its extension to three-dimensional Cartesian geometry is complicated, thereby undermining its

potential for an efficient algorithm. All described methods are nodal methods as defined in this

work and we stated test and trial function spaces for each method, thus reducing the difference

between at least the HODD, DGFEM, and the AHOTN methods to the difference in their

respective function spaces.

While an extensive body of literature about spatial discretization methods exists, a com-

prehensive comparison across methods for multi-dimensional Cartesian geometry does not. For

slab geometry, Alcouffe et al.[32] performed a comprehensive comparison of methods, but these

results cannot be extended to multi-dimensional SN problems due to the substantially differ-

ent properties of the underlying exact solutions that fundamentally influence the behavior of

numerical schemes to compute approximations to these exact solutions.
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Chapter 3

Test Problem Specification

This chapter introduces three test problems that are instrumental in obtaining performance

data from the selected spatial discretization methods for the final goal of creating a data-based

fitness function measuring the applicability of spatial discretization methods for certain classes

of problems. In section 3.1 properties of the exact solution of the SN equations are reviewed

setting the stage for the description of the developed Method of Manufactured solution test suite

in section 3.2 which is used for measuring method’s accuracy and execution time. The MMS

test suite was implemented in the code MMS3D. Subsequently, in section 3.4 Lathrop’s test

problem is described which is used for measuring method’s resilience against negative fluxes.

Finally, in section 3.6 a simple test problem is described testing whether a method possesses

the thick diffusion limit or not.

3.1 Review of the Exact SN Solution

In this section we review properties of the underlying exact solution of the SN equations in multi-

dimensional geometry and describe methods for obtaining the exact, or near-exact, solution for

simplified SN transport problems. This is crucial for the remainder of the described work

because quantification of the spatial discretization error requires knowledge of the underlying

exact solution, or some very accurate approximation thereof. The review within this section is

a prelude to the description of the MMS test problem in section 3.2, where the basic concepts

introduced within this section are utilized in creating viable test problems that allow for an

accurate quantification of the spatial discretization error.

3.1.1 Smoothness of the SN Exact Solution

In this section properties of the exact solution of the SN equations are reviewed following

the discussion in [1] and [20] for two-dimensional Cartesian geometries which are subsequently
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extended to three-dimensional Cartesian geometries. For the discussion in the two spatial

dimensions x and y, let us simplify the SN equations, Eqs. 1.5, by assuming that the total

cross section σt is a positive constant, and let the medium be non-scattering σs = 0 such that

the SN equations simplify to:

Ω̂n · ∇ψn + σt(~r)ψn(~r) =
q(~r)

4π
for n = 1, .., N and ~r ∈ D

ψn(~r) = ψB(~r, Ω̂n) for n = 1, .., N and ~r ∈ ∂D and n̂ · Ω̂ < 0. (3.1)

The set of SN equations is now decoupled and can be considered on a direction-by-direction

basis.

Without loss of generality, let the angular cosines µn and ηn be larger than zero, i.e. only

angular cosines in the first quadrant are considered. The conclusions of this discussion can easily

be extended to the three other quadrants by applying appropriate transformations. Assume

further that the imposed external source and the boundary conditions given on the west and

south edge, ψB,W (y) and ψB,S(x), are smooth, i.e. all partial derivatives are continuous. Then,

an analytical solution of the SN equations for the non-scattering case can be obtained by

transforming Eq. 3.1 into the characteristic form

dψn
ds

+ σtψn (x0 + µns, y0 + ηns) =
1

4π
q (x0 + µns, y0 + ηns) , (3.2)

where ~r0 = (x0, y0)T is a point on the west or south boundary of the domain.

As illustrated in Fig. 3.1, the solution of the ordinary differential equation 3.2 along the

characteristic has to recognize that the angular flux at any point in the domain depends on the

boundary condition at ~r0 and the source along the characteristic up to the field point (x, y).

For instance the angular flux at P2 depends on the value of ψB,W (~rP1) and the source along

the red line, while the angular flux at P4 depends on ψB,S(~rP3) and the source along the green

line. Consequently, the domain is divided into two segments, W and S, that are illuminated

by the west and south boundary, respectively. The line of demarcation is called the singular

characteristic (SC), i.e. the characteristic that emanates from the lower left corner of the domain

~r = (0, 0). The solution within its respective segment can be obtained as:

ψn(x, y) =

 ψB,W

(
y − ηn

µn
x
)
e
− σt
µn
x

+
∫ x/µn

0 ds e−σts q(x−µns,y−ηns)4π y < ηn
µn
x

ψB,S

(
x− µn

ηn
y
)
e
− σt
ηn
y

+
∫ y/ηn

0 ds e−σts q(x−µns,y−ηns)4π y > ηn
µn
x

. (3.3)

While the solution within each segment is clearly smooth, the global solution might exhibit

irregularity across the SC. As an example, let ψB,S = 0, ψB,W = 1, and q(x, y) = 0. Then

the angular flux in the segment illuminated by the south boundary is zero, in contrast to the
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Figure 3.1: Separation of the domain D by the singular characteristic (SC) into the W and S
segments illuminated by an incoming flux on the west and south boundary, respectively.

solution in the W segment, which is non-zero; thus the angular flux is not continuous across

the SC.

In the remainder of this work the degree of smoothness of the SN equations’ exact solution

is denoted by Cp where p takes integer values p = 0, 1, .... Thereby, p is set equal to the lowest

partial derivative order α defined by

Dαψn =
∂αψn

∂xαx∂yαy∂zαz
, with α = αx + αy + αz (3.4)

such that at least one Dαψn is discontinuous across the SC:

p = minα s.t. [[Dαψn]]SC 6= 0 for some α = αx + αy + αz. (3.5)

In Eq. 3.5, the jump across the singular characteristic [[g(x, y)]]SC for the generic function

g(x, y) is given by

[[g]]SC = lim
ε→0

(
g

(
x,
ηn
µn
x+ ε

)
− g

(
x,
ηn
µn
x− ε

))
. (3.6)

The first few orders of smoothness C0, C1 and C2 represent a discontinuous angular flux,

discontinuous first partial derivatives, and discontinuous second partial derivatives, respectively.

The smoothness of the angular flux is determined by the choice of the boundary conditions and
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the distributed source.

The consideration for the two-dimensional case is now extended to three spatial dimensions.

As depicted in Fig. 3.2 the spatial domain is now separated into three segments, depending

on the boundary face from which a point is illuminated. In the remainder of this work, the

following naming convention of the boundary faces is used. Without loss of generality, let the

domain be given by:

D = [0, X]× [0, Y ]× [0, Z], (3.7)

then the north(N), south(S), east(E), west(W), top(T), and bottom(B) boundary faces are

characterized as follows:

north: y = Y, x, z ∈ [0, X]× [0, Z]

south: y = 0, x, z ∈ [0, X]× [0, Z]

east: x = X, y, z ∈ [0, Y ]× [0, Z]

west: x = 0, y, z ∈ [0, Y ]× [0, Z]

top: z = Z, x, y ∈ [0, X]× [0, Y ]

bottom: z = 0, x, y ∈ [0, X]× [0, Y ]. (3.8)

Analogous to the two-dimensional case, consider a discrete ordinate with angular cosines

in the first octant, i.e. µn > 0, ηn > 0, and ξn > 0, such that the bottom, west, and south

boundary faces are inflow boundaries. The planes of demarcation between the three segments

are referred to as the singular planes (SPs) Ex (red), Ey (green), and Ez (blue) that are given

by the following parametric forms:

Ex : ~r = λΩ̂ + ζêx for λ, ζ > 0

Ey : ~r = λΩ̂ + ζêy for λ, ζ > 0

Ez : ~r = λΩ̂ + ζêz for λ, ζ > 0, (3.9)

where λ and ζ are the independent characteristic variables.

The Ex plane is the demarcation between the segments illuminated from the bottom and the

segment illuminated from the south, while the Ey plane segregates the bottom illuminated seg-

ment and the west illuminated segment, and finally Ez separates the west and south illuminated

segments. All three SPs intersect in the SC line S given by the parametric form:

S : ~r = λΩ̂ for λ > 0. (3.10)
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Figure 3.2: Separation of the three-dimensional domain D by the singular characteristic and
the singular planes into three segments illuminated by the west, bottom, and south boundary.

In analogy to the two-dimensional case, the solution of the SN equations in three-dimensional

Cartesian geometry can be determined analytically to be

ψn(~r) =
ψB,W

(
y − ηn

µn
x, z − ξn

µn
x
)
e
− σt
µn
x

+
∫ x/µn

0 ds e−σts q(~r−sΩ̂)
4π Ory (~r) > 0, Orz (~r) < 0

ψB,S

(
z − ξn

ηn
y, x− µn

ηn
y
)
e
− σt
ηn
y

+
∫ y/ηn

0 ds e−σts q(~r−sΩ̂)
4π Orx (~r) < 0, Orz (~r) > 0

ψB,B

(
x− µn

ξn
z, y − ηn

ξn
z
)
e
− σt
ξn
z

+
∫ z/ξn

0 ds e−σts q(~r−sΩ̂)
4π Orx (~r) > 0, Ory (~r) < 0,

(3.11)

where the orientation with respect to a singular plane ORk for k = x, y, z is given by the

following expressions:

Orx (~r) = ~r T
(

Ω̂× ê1

)
Ory (~r) = ~r T

(
Ω̂× ê2

)
Orz (~r) = ~r T

(
Ω̂× ê3

)
. (3.12)
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The boundary conditions ψB,W (y, z), ψB,S(z, x), and ψB,B(x, y) given on the west, south, and

bottom inflow boundary are now functions of the two spatial variables that are not fixed on a

boundary face; the respective variables can be inferred from Eq. 3.8.

The solution within each of the three segments is again smooth, but it can exhibit irregu-

larities across the SPs and the SC. For the discussion of the order of smoothness, let the jump

across the SPs Ex, Ey and Ez be denoted by:

[[g (~r)]]Ex = lim
ε→0

{
g
(
λΩ̂ + ζê1 + |ε|

(
Ω̂× ê1

))
− g

(
λΩ̂ + ζê1 − |ε|

(
Ω̂× ê1

))}
[[g (~r)]]Ey = lim

ε→0

{
g
(
λΩ̂ + ζê2 + |ε|

(
Ω̂× ê2

))
− g

(
λΩ̂ + ζê2 − |ε|

(
Ω̂× ê2

))}
[[g (~r)]]Ez = lim

ε→0

{
g
(
λΩ̂ + ζê3 + |ε|

(
Ω̂× ê3

))
− g

(
λΩ̂ + ζê3 − |ε|

(
Ω̂× ê3

))}
. (3.13)

Then, in analogy to the two-dimensional case, we refer to a solution in three-dimensional

Cartesian geometry to be smooth to order Cp with p = 0, 1, 2, ... if at least one partial derivative

of order p is discontinuous across one of the singular planes:

p = minα s.t. [[Dαψn]]Ek 6= 0 for k = x, y or z and some α = αx + αy + αz. (3.14)

The smoothness of the exact solution can be controlled by imposing boundary conditions that

satisfy certain criteria on the edges common to two inflow faces. In section 3.2 boundary

conditions will be developed that render the solution Cp with p = 0, 1, ..,∞ smooth.

3.1.2 Obtaining Reference Solutions

A main theme throughout the described work is the estimation of the spatial discretization

error associated with an approximate solution of the SN equations. The discretization error

is used for comparing the accuracy of various spatial discretization schemes among each other

and for computing their respective rate of convergence. In order to be able to compute the

discretization error exactly it is necessary to secure knowledge of the exact solution of the SN

equations. However, in reality it might suffice to obtain an approximation of the true solution

that is much more accurate than the solutions whose discretization error we want to compute.

In the following, three methods are reviewed that are commonly used to compute exact solutions

or highly accurate approximations thereof for the problem of interest: Method of Exact Solution

(MES), fine mesh reference solutions and the Method of Manufactured Solution (MMS).

Method of Exact Solutions

For the MES the system of PDEs under consideration (the SN equations in our case) is solved

analytically for a given configuration (domain, boundary conditions, sources) such that a closed
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form solution is obtained. The desirable feature of the MES is that the reference solution is

exact (at least theoretically) and is known everywhere in phase space. However, MES suffers

from two major drawbacks[45]:

• The set of problems that possess an analytical solution is very limited. In general configu-

rations allowing an analytical solution involve simplifications regarding the dimensionality

of the problem ((semi)-infinite or symmetric problems), the physics of the problem (e.g.

inviscid flow, [46]) or the decoupling of the equations among others. Thus, the exact so-

lution does not exercise the full range of capabilities implemented in a code and therefore

error estimation is not possible in all of the code’s applicable regimes.

• The obtained exact solutions are often given in terms of special mathematical functions

(exponential integrals, gamma functions, inverse Laplace transforms etc.) and are there-

fore often difficult to implement. Consequently, the numerical values resulting from the

evaluation of the analytical expressions might be inaccurate thus invalidating the primary

advantage of the MES.

In particular the MES found several applications for SN problems in one-dimensional slab

geometry and two-dimensional Cartesian geometry. Because of vastly different properties of

the exact solution as well as the mechanics to obtain it, work done in slab-geometry and two-

dimensional Cartesian geometry has barely any overlap. Exact solutions for slab-geometry

transport problems can be obtained in the presence of scattering[4], while that is impossible

for two-dimensional Cartesian problems. In addition, the exact angular flux in slab-geometry

transport problems is smooth, i.e. it possesses an infinite number of bounded partial derivatives,

because the SN equations in one-dimensional slab geometry are merely “a coupled system of

first-order ordinary differential equations with constant coefficients”[47]; in marked contrast the

underlying exact angular flux for two-dimensional transport problems usually features limited

smoothness, [20]. For this reason, we skip the discussion of slab geometry problems and only

discuss two-dimensional Cartesian geometry in this work.

Two-dimensional Cartesian transport problems allow exact solution of the SN equations

only in the absence of scattering. The solution process was outlined in subsection 3.1.1 and the

solution for general boundary conditions and sources is given in Eq. 3.3. The first application

of Eq. 3.3 was in [20] where it was used to demonstrate the generally limited smoothness of the

exact angular flux solution. Later, Larsen[18] used a yet more simplified configuration featuring

unit incoming angular fluxes on the west and south boundary edges and a vanishing source for

demonstrating the reduction of the convergence order of the Diamond Difference scheme due

to the limited smoothness of the underlying exact solution. In this configuration the solution

simplifies to:

ψ(x, y) = e
−σmin

(
x
µ
, y
η

)
.
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Table 3.1: Boundary Conditions and the resulting smoothness used in published variations of
Larsen’s benchmark.

Boundary Conditions Smoothness Reference

ψL = 0, ψB = 1
C0 [21], [22], [1]

ψL = 1, ψB = 0

ψL = 1, ψB = 1 C1 [18], [21], [22], [1]

ψL = y2, ψB = x2 C2 [1]

ψL = y2, ψB = x2, η = µ C3 [1]

This test case shall be referred to as Larsen’s benchmark in the remainder of this work. Note,

that [18] uses the solution only along a single discrete ordinate such that µ and η bear no

indices. This is inconsequential for non-scattering media since the various discrete ordinates’

equations are decoupled.

Based on [18], Azmy[21], Duo and Azmy[22] and Duo[1] created variations of Larsen’s bench-

mark with different levels of smoothness of the underlying solution for the purpose of performing

error analysis on various spatial discretization schemes all featuring a constant representation

of the source. Within [21] and [22] three variations were considered: Zero incoming flux on the

west and unit incoming flux on the south boundary, unit incoming flux on the west and zero

incoming flux on the south boundary and finally Larsen’s original setup featuring unit incoming

flux on both west and south boundary. Later, Duo[1] expanded on the earlier variations by

prescribing boundary conditions varying like x2 (y2) along the south edge (west edge); using

these boundary conditions the smoothness of the exact solution can be increased to C2 and C3,

respectively. For a comprehensive presentation of all previously reported variations of Larsen’s

benchmark consult Table 3.1. The exact solutions employed in Refs. [18], [21], [22] and [1] are

extremely valuable (and in fact represents the starting point for the development of the MMS

test suite in this work) but they do not not allow for scattering and are therefore not general

enough for the purpose of this work. In addition, the setups in the above references do not

necessitate the computation of higher order spatial flux moments, only the average angular flux

needs to be computed. Therefore, it is necessary to extend the formalism in these references to

suit the requirements of this work.

Fine Mesh Reference Solution

The idea behind using a fine mesh reference solution is to solve the underlying system of

equations on a very fine mesh and then utilize this solution to compute the discretization error
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on coarser meshes featuring a much larger error, e.g. [11]. The underlying assumption of this

method is that the discretization error in the reference solution is too small to pollute the

computation of the discretization error on the coarse mesh. However, as demonstrated in [1],

the discretization error in the reference solution invalidates the computed discretization error

for mesh refinement levels that are too close to the reference solution’s mesh. Reference [1]

states that convergence of the fine mesh reference solution to the exact angular flux cannot

be guaranteed “unless the method is fully consistent and the asymptotic regime has been

reached”[1] thus challenging the rigor behind using fine mesh reference solutions. If for example

the discretization error measured in the L∞ norm is desired and the exact angular flux is not

continuous, the computed error using a fine mesh reference solution is meaningless because

the reference solution does not converge to the exact solution in the L∞ norm. Even if this

pathological example is avoided, the limited smoothness of the SN solution causes the reference

solution to suffer from a limited rate of convergence so the error even on fine meshes can be

inaccurate[48].

Despite these concerns, fine mesh reference solutions can be successfully used for the com-

putation of discretization errors if the reference solutions’ discretization error is negligible, e.g.

by using an adaptive mesh refinement procedure (AMR)[11]. However, this requires access to

a robust AMR procedure which offsets the main advantage of the fine mesh reference solution,

namely its simplicity.

Method of Manufactured Solutions

The first application (to our knowledge) of the MMS within the realm of radiative transport

theory dates back to 1971 by Lingus[19]. However, the application is much more limited than

the general treatment in [45] and [46] which are not specific to neutron/radiative transport

theory. Following the path laid out in [45] the PDE is given as some (differential) operator

(also containing boundary conditions) D operating on the solution vector ~u to yield some

source vector ~g. The forward way of solving this problem is to find ~u to some given ~g, while for

the purpose of the MMS we select ~u = ~uM and compute the corresponding source vector ~gM

by:

~gM = D~uM .

If we solve the problem using the numerical method under scrutiny, with an appropriate dis-

cretization of the source vector ~ghM , we obtain an approximation ~uh of the true solution:

Dh~uh = ~ghM ⇒ ~uh =
(
Dh
)−1

~ghM ,

and since we know the solution ~uM we can compute the discretization error by ~uh − ~uM .
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Within the realm of neutron/radiative transport theory the MMS was mostly used for com-

puter code verification [49], [50] and [51]. In Ref. [49] Pautz develops MMS for the verification

of the ATTILA code. In marked contrast to the approach adopted in this work, Pautz’ man-

ufactured solutions are not restricted to the one-group SN equations. They are not only an

MMS in the spatial variables but rather depend on energy, direction and space. Thus, his

MMS exercises the energy, angular and spatial discretization and consequently any computed

discretization error is, in general, a combination of the error from the energy, angular and

spatial discretization. However, he designes several variants of his MMS such that a subset

of the errors vanishes; some test cases are even designed so as to be solved exactly by the

selected discretization schemes. Later Pautz used the MMS to verify the SCEPTRE code [50],

this time only verifying that the one-group problem is solved correctly, i.e. the manufactured

solutions are independent of energy. The first manufactured solution is non-zero only along

a given discrete ordinate and varies like a polynomial in space. It is exactly solved by the

utilized FEM method if (1) the trial functions’ span encompasses the utilized polynomial and

(2) the discrete ordinate along which the angular flux is non-zero is part of the quadrature rule.

Subsequently, Pautz uses functions that vary exponentially in space and linearly/quadratically

in angle; for these manufactured solutions the SN/FEM solution will comprise a discretization

error. Finally, Drumm [51] uses a manufactured solution that is very similar to the second type

used in [50], yet not identical. He uses these manufactured solutions to investigate order of

convergence anomalies occurring for second order SN methods.

The three main differences between the MMS that is developed in this work and the MMS

used in Refs. [49], [50] and [51] is:

1. We adopt the SN approximation within the manufactured solution such that when com-

paring numerical and reference solutions only the spatial discretization error is quantified.

2. The developed manufactured solutions are potentially non-smooth across the singular

characteristic (SC) or singular planes (SPs), while Pautz’ and Drumm’s manufactured so-

lutions are all smooth, i.e. they possess an infinite number of bounded partial derivatives.

3. Pautz’ manufactured solutions usually contain negative sources while ours typically fea-

ture a strictly positive source but can be tuned to comprise negative sources as well.

The approach used throughout this work to develop the MMS test suite is strongly rooted

in the works of Larsen, Azmy and Duo described in subsection 3.1.2. In fact, Duo [17], [1]

originally suggested the method to derive manufactured solutions that is adopted in this work

and implemented it for a small number of test cases in 2D. The ultimate goal is to manufacture
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Table 3.2: Variants of the MMS benchmark suggested by Duo[1]. Note, Duo uses a different
normalization of the angular weights so he lacks the 1/4π factor.

Smoothness Boundary Conditions Auxiliary Source Q

C0
ψ(0, y) = ψW Q

4π >
w1σs max(ψW ,ψS)

1−σs
σtψ(x, 0) = ψS

C1
ψ(0, y) = 0 Q

4π = 1
ψ(x, 0) = 0

a solution for the SN equations (compare Eq. 1.5):

Ω̂n · ∇ψ(~r, Ω̂n) + σ(~r)ψ(~r, Ω̂n) =
q(~r, Ω̂n)

4π
+

1

4π

N∑
n=1

wnσs(~r)ψ(~r, Ω̂n), (3.15)

with boundary conditions given on the inflow boundaries:

ψ(~r, Ω̂n) = ψB(~r). (3.16)

To this end, an auxiliary, non-scattering problem featuring a constant distributed source and

the same boundary conditions as the original problem is solved analytically for the exact angular

flux ψ(~r, Ω̂n):

Ω̂n · ∇ψ(~r, Ω̂n) + σψ(~r, Ω̂n) =
Q

4π
. (3.17)

Then the source of the SN transport problem is computed according to the MMS procedure:

q(~r, Ω̂n) = 4π
(

Ω̂n · ∇ψ(~r, Ω̂n) + σ(~r)ψ(~r, Ω̂n)
)
−

N∑
n=1

wnσs(~r)ψ(~r, Ω̂n)

= Q−
N∑
n=1

wnσs(~r)ψ(~r, Ω̂n). (3.18)

The analytical solution of Eq. 3.17 subject to boundary conditions Eq. 3.16 is then a solution

of the original SN problem Eq. 3.15 subject to boundary conditions given by Eq. 3.16 and a

distributed source defined by Eq. 3.18. Duo proposes and implements two variations of this

MMS with parameters given in Table 3.2.
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Summary

The properties of the SN equations’ exact solution in slab geometry on the one hand and

multi-dimensional geometry on the other hand are vastly different. Therefore, research in slab

geometry regarding spatial discretization schemes cannot be extended to multi-dimensional

geometries. In multi-dimensional geometries analytical reference solutions exist only in the

absence of scattering leaving only the MMS as a reasonable option for securing knowledge of the

underlying exact solution thereby enabling an accurate computation of the numerical solution’s

error. Finally, comparing Duo’s [17] and Pautz’[50] manufactured solutions, consistency with

the physical meaning of the source (at least for error estimation) demands positive sources

and in addition error estimation for SN transport problems requires the solution to exhibit

limited smoothness otherwise the results will not reflect reality. Therefore, Duo’s approach

seems the most promising for securing knowledge of the exact solution of the SN equations in

realistic configurations; for the purpose of this work its extension to three-dimensional Cartesian

geometry and computation of arbitrary polynomial order moments of the source, boundary

conditions, and exact solution is necessary.
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3.2 Method of Manufactured Solutions Test Suite

In this section the Method of Manufactured Solutions test suite in three-dimensional geometry

is introduced before it is used for comparing the accuracy of the selected spatial discretization

methods. The MMS test suite is based on the exact solution of the non-scattering SN equations

stated in Eq. 3.11; in this section it will be shown that by choosing appropriate boundary

conditions the smoothness of the exact solution can be controlled. In the remainder of the

section the implementation of the MMS suite is discussed including the tracking of the singular

characteristic line (SC) and singular planes (SPs) and the computation of the exact angular

and scalar fluxes and sources Legendre moments.

3.2.1 Smoothness of the constructed Solution

Using Eq. 3.11 as a starting point we simplify the construction of the test suite by assuming

that the source in the domain is uniform and equal to Q/4π. Also, recall that the medium is

homogeneous σt (~r) = σt. Then the exact solution of the non-scattering SN equations is:

ψn (~r) =
ψB,[W,E]

(
ȳ −

∣∣∣ ηnµn ∣∣∣ x̄, z̄ − ∣∣∣ ξnµn ∣∣∣ x̄) e− σt
|µn|

x̄
+ Q

4πσt

(
1− e−

σt
|µn|

x̄
)

Ory (~r) > 0, Orz (~r) < 0

ψB,[S,N ]

(
z̄ −

∣∣∣ ξnηn ∣∣∣ ȳ, x̄− ∣∣∣µnηn ∣∣∣ ȳ) e− σt
|ηn|

ȳ
+ Q

4πσt

(
1− e−

σt
|ηn|

ȳ
)

Orx (~r) < 0, Orz (~r) > 0

ψB,[B,T ]

(
x̄−

∣∣∣µnξn ∣∣∣ z̄, ȳ − ∣∣∣ηnξn ∣∣∣ z̄) e− σt
|ξn|

z̄
+ Q

4πσt

(
1− e−

σt
|ξn|

z̄
)

Orx (~r) > 0, Ory (~r) < 0

(3.19)

where the subscripts [W,E], [S,N ] and [B, T ] indicate that depending on the sign of the di-

rection cosines µn, ηn and ξn, respectively, the appropriate (inflow) face from each of the three

sets of parallel faces is selected. The three coordinates x̄, ȳ and z̄ extend the solution of the

non-scattering SN equations to all eight angular octants and are given by:

x̄ =
1− (sign )µn

2
X + sign (µn)x

ȳ =
1− (sign ) ηn

2
Y + sign (ηn) y

z̄ =
1− (sign ) ξn

2
Z + sign (ξn) z. (3.20)
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For later reference it should be noted that Eq. 3.19 is the solution of the following SN transport

problem:

Ω̂n · ∇ψn + σtψn (~r) =
Q

4π
ψn(~r[W,E]) = ψB,[W,E](y, z)

ψn(~r[S,N ]) = ψB,[S,N ](z, x)

ψn(~r[B,T ]) = ψB,[B,T ](x, y), (3.21)

where ψB,[W,E], ψB,[S,N ] and ψB,[B,T ] are fixed boundary conditions. The choice of boundary

conditions determines the smoothness of the exact solution defined via Eqs. 3.13 and 3.14 of

the test problem. For an easier implementation of the MMS test suite we restrict all boundary

conditions to be polynomials in the two degrees of freedom on the respective face, e.g. y and z

on the W and E face, which still allows an arbitrary degree of smoothness p with the exception

of the p = ∞ case which will be treated independently. Thus, let the boundary conditions for

the west/east surface be given by:

ψB,[W,E] =

Ly∑
ly=0

Lz∑
lz=0

a
[W,E]
ly ,lz

ȳly z̄lz , (3.22)

and let analogous expressions hold on the other two inflow faces. Boundary conditions that

render the solution C0 to C3 are compiled in Table 3.3. Using the general expression for the

boundary conditions on the west/east faces, Eq. 3.22, the exact angular flux in the solution

segment illuminated by the west/east faces is given by

ψn (~r) =

 Ly∑
ly=0

Lz∑
lz=0

a
[W,E]
ly ,lz

(
ȳ −

∣∣∣∣ ηnµn
∣∣∣∣ x̄)ly (z̄ − ∣∣∣∣ ξnµn

∣∣∣∣ x̄)lz − Q

4πσt

 e
− σt
|µn|

x̄
+

Q

4πσt
. (3.23)

along with equivalent expressions for the other two segments. For the p =∞ case the boundary

conditions are chosen such that the flux within each segment becomes:

ψn (~r) = Ce
−σt

(
x̄
|µn|

+ ȳ
|ηn|
− z̄
|ξn|

)
+

Q

4πσt
, (3.24)

which can be achieved by using the boundary conditions listed in Table 3.3. Note that the

exact angular flux expression for p = ∞ features a positive argument in the exponential for

the z-dimension such that ψn grows exponentially with increasing z̄. This is computationally

undesirable but cannot be avoided because no boundary conditions exist that render the ar-

gument of the exponential in Eq. 3.24 to be σt

(
x̄
|µn| + ȳ

|ηn| + z̄
|ξn|

)
. Even though selecting the
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Table 3.3: Expressions for the boundary conditions and conditions that must be satisfied by
the user-selected coefficients to ensure positivity of the distributed source for the MMS in
three-dimensional Cartesian geometry that render the solution C0 through C3 and C∞.

p ψ[W,E] ψ[S,N ] ψ[B,T ]

C0
a

[W,E]
0,0 a

[S,N ]
0,0 a

[B,T ]
0,0

a
[W,E]
0,0 6= a

[S,N ]
0,0 6= a

[B,T ]
0,0 6= Q

σt

C1
a

[W,E]
0,0 a

[S,N ]
0,0 a

[B,T ]
0,0

a
[W,E]
0,0 = a

[S,N ]
0,0 = a

[B,T ]
0,0 6= Q

σt

C2
Q

4πσt
+ a

[W,E]
2,2 ȳ2z̄2 Q

4πσt
+ a

[S,N ]
2,2 z̄2x̄2 Q

4πσt
+ a

[B,T ]
2,2 x̄2ȳ2

C3
Q

4πσt
+ a

[W,E]
3,3 ȳ3z̄3 Q

4πσt
+ a

[S,N ]
3,3 z̄3x̄3 Q

4πσt
+ a

[B,T ]
3,3 x̄3ȳ3

C∞
Q

4πσt
+ ae

− σt
|µn|

x̄+
σt
|ξn|

z̄ Q
4πσt

+ ae
− σt
|ηn|

ȳ+
σt
|ξn|

z̄ Q
4πσt

+ ae
− σt
|µn|

x̄+
σt
|ηn|

ȳ

appropriate boundary conditions allows for controlling the smoothness of the underlying ex-

act solution it is noteworthy that only the C0 (constant but different inflow flux on each face

e.g. shielding problem with shadowing) and C1 (vacuum boundary condition and distributed

source, e.g. reactor physics like problems) cases are realistic; the Cp, 1 < p <∞ cases are only

interesting from an academic point of view and the p =∞ case is interesting for computer code

verification.

3.2.2 Construction of a Manufactured Solution with Scattering

The angular fluxes Eqs. 3.23 and 3.24 are solutions to the non-scattering SN transport problem

Eq. 3.21. In order to construct manufactured solutions to the general SN equations, Eq. 1.5 is

solved for the distributed source q (~r):

q(~r) = Ω̂n · ∇ψn + σt(~r)ψn(~r)− 1

4π
σs(~r)φN (~r) (3.25)

Following the standard MMS formalism the exact solution is now selected and substituted into

Eq. 3.25. Since our manufactured solutions satisfy Q = ∇ψn + σt(~r)ψn(~r) we obtain the

following prescription for the distributed source q:

q(~r) = Q− σs(~r)φN (~r). (3.26)
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The manufactured solution to the SN problem with scattering can now be stated as follows:

The angular flux Eq. 3.23 (p < ∞) or 3.24 (p = ∞) is the solution of problem Eq. 1.5 if

the source is computed by Eq. 3.26. The distributed source can, under certain circumstances,

become negative (see Eq. 3.26) which is inconsistent with the physical meaning of the source

and might lead to problems with using such sources in a computer code if the input of the code

is restricted to positive sources. Therefore, it should be an objective to select manufactured

solutions such that the source is always positive. For the purpose of this work “positive” sources

are understood to be positive everywhere q (~r) > 0 ~r ∈ D as opposed to requiring that the cell-

averaged sources are positive M
~i
~0
{q} > 0, ~i ∈ D. Only the latter condition is usually checked for

by computer codes; in fact pointwise positivity is a sufficient but not a necessary condition for

positive cell-averaged sources. However, if a given point source is negative for some ~r ∈ D but

does not feature negative cell-averaged sources on a given mesh, then sufficient mesh refinement

will lead to negative cell-averaged sources because negative “patches” are successively isolated

until they are not offset by positive source regions in their vicinity.

3.2.3 Implementation of the MMS Test Suite

In order to generate data that can be used for computing the discretization error of spatial

discretization methods of the SN equations we compute cell Legendre moments of the angular

and scalar flux given by:

ψ
~i
n,~m = M

~i
~m {ψn (~r)}

φ
~i
~m = M

~i
~m {φ (~r)} =

N∑
n=1

wnψ
~i
n,~m

q
~i
~m = M

~i
~m {q (~r)} = Qδ~m,~0 − σsφ

~i
~m. (3.27)

However, this is not as easy as it might seem at first glance because a cell can be intersected by

the SC or one of the SPs or can be completely within a single segment. In order to determine

which cells are intersected by the SC (type I) and which by the SPk (k=x,y,z) (type II) a

tracking procedure is devised, which returns a list of cells for each intersection type along with

a list of points within this cell that delimit the segments each of which is illuminated by a

different domain boundary, i.e. the convex hull1. The convex hull is then used for tessellating

the cell into a set of tetrahedra (type I) or triangular prisms (type II intersections) to facilitate

the integration procedure which effects the operations denoted via M
~i
~m {·}. Note, that for the

C∞ case no tracking or tessellation needs to be performed because the flux follows the same

mathematical expressions regardless of which boundary face a point is illuminated by.

1The convex hull is the minimal convex set of points containing the tetrahedron.
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Tracking the SC and the SPs

The tracking procedure is broken up into two subtasks: First the intersection of the SC (see

red solid line in Fig. 3.3) with all mesh cells within the domain is computed followed by the

computation of the intersections for the SPs using tracking information from the projection of

the SC onto the boundary face as depicted in Fig. 3.3 (dashed red line). The intersections of

the SP is inferred from the tracking data of the SC and its projection.

0.0

0.5

1.0
0.0

0.5

1.0

0.0

0.5

1.0

Figure 3.3: Schematic illustration of the tracking procedure. First the intersection of the SC
(red solid line, along Ω̂n) with all cells is computed followed by tracking the intersection of the
projection of the SC onto the far y-z plane (dashed red line). The intersections of the SP (light
blue) with the mesh cells is then inferred from this data. The direction of particle motion Ω̂n

is a unit vector along the SC (red solid line).

Tracking the SC

Computing the intersection of the singular characteristic line with every face for every com-

putational cell is computationally intractable since it scales with the total number of cells. It

is computationally more efficient to follow the SC through the domain, i.e. to start at the

corner cell where the SC originates, then compute the face (or in the degenerate case the edge

or corner point) where the SC leaves the mesh cell and increment the cell index depending on
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which face/edge/point is intersected. This basic step is repeated for each mesh cell that the SC

intersects. Thus, the execution time of the tracking does not scale with the total number of cells

but rather with their cubic root. The algorithm used within the implementation of the MMS

test suite is detailed in algorithm 1. Note that particular care is taken to identify degenerate

intersections, i.e. the SC intersects with the corner point that borders three outflow faces or one

of the edges that border two outflow faces, by assuming that those lower dimensional entities

have a finite thickness related to the machine precision εmach. In loose terms, one could think

to these as “fat” points and edges. From the SC tracking we obtain a list of cells that are

intersected by the SC along with the points where the SC enters and leaves the respective cell.

Tracking the SPs

The first step for obtaining the tracking information for the singular planes is to track the

projection of the SC along the x, y and z-direction onto the domain’s far face for the SPx, SPy

and SPz planes, respectively. For a single SP this projection is depicted in Fig. 3.3 as a dashed

red line. The utilized algorithm 2 is a two-dimensional equivalent of algorithm 1. Algorithm

2 references the two coordinates u and v and the two direction cosines µu and µv which are

related to the standard coordinates x,y and z as follows:

SPx: u← y, v ← z, µu ← ηn µv ← ξn

SPy: u← z, v ← x, µu ← ξn µv ← µn

SPz: u← x, v ← y, µu ← µn µv ← ηn.

After executing algorithm 2 the indices of cells crossed by the projected SC in the u-v plane

as well as the coordinates where the projected SC enters and leaves a two-dimensional cell are

known. For a given pair of indices iu, iv (varying orthogonal to the projection) cells that are

intersected by the SP satisfy the following condition for the index iw:

i∗w =

max ({iw|iu, iv}) if µw > 0

min ({iw|iu, iv}) if µw < 0

µw > 0 : i∗w < iw < Iw

µw < 0 : 1 ≤ iw < i∗w. (3.28)

In Eq. 3.28 {iw|iu, iv} (read iw given iu and iv) is the subset of all cell indices assembled in the

SC list featuring a particular value for indices iu and iv. Going back to Fig. 3.3 these cells are
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Algorithm 1 SC Tracking

1: Define : sµ = sign (µn) and sη = sign (ηn) and sξ = sign (ξn)

2: Set i = 1 +
1−sµ

2 (I − 1) and j = 1 +
1−sη

2 (J − 1) and k = 1 +
1−sξ

2 (K − 1) and

3: ~rout =
(

1+sµ
2 x0 +

1−sµ
2 X,

1+sη
2 y0 +

1−sη
2 Y,

1+sξ
2 z0 +

1−sξ
2 Z

)
and

4: ~rs = ~rout
5: while 1 ≤ i ≤ I and 1 ≤ j ≤ J and 1 ≤ k ≤ K do
6: ~rin ← ~rout
7: ~c =

(
1+sµ

2 xi +
1−sµ

2 xi−1,
1+sη

2 yj +
1−sη

2 yj−1,
1+sξ

2 zk +
1−sξ

2 zk−1

)
8: κ = ‖~rs − ~c‖ and κx = cx−xs

µn
and κy =

cy−ys
ηn

and κz = cz−zs
ξn

9: if |κx − κy| < κεmach and |κx − κz| < κεmach and |κy − κz| < κεmach then
10: Intersection with corner.
11: i← i+ sµ, j ← j + sη, k ← k + sξ, ~rout ← ~c
12: else
13: xa = xs + κxµn and ya = ys + κyηn and za = zs + κzξn
14: if |κx − κy| < κεmach and zk−1 < za < zk then
15: Intersection with edge along z-axis.
16: i← i+ sµ, j ← j + sη, ~rout ← (cx, cy, za)
17: else if |κx − κz| < κεmach and yj−1 < ya < yj then
18: Intersection with edge along y-axis.
19: i← i+ sµ, k ← k + sξ, ~rout ← (cx, ya, cz)
20: else if |κy − κz| < κεmach and xi−1 < xa < xi then
21: Intersection with edge along x-axis.
22: j ← j + sη, k ← k + sξ, ~rout ← (xa, cy, cz)
23: else
24: ~r1 = ~rs + κxΩ̂n, ~r2 = ~rs + κyΩ̂n, ~r3 = ~rs + κzΩ̂n

25: if yj−1 < y1 < yj and zk−1 < z1 < zk then
26: Intersection with West/East face.
27: i← i+ sµ, ~rout ← (cx, y1, z1)
28: else if xi−1 < x2 < xi and zk−1 < z2 < zk then
29: Intersection with South/North face.
30: j ← j + sη, ~rout ← (x2, cy, z2)
31: else if yj−1 < y3 < yj and zk−1 < z3 < zk then
32: Intersection with Bottom/Top face.
33: k ← k + sξ, ~rout ← (x3, y3, cz)
34: else
35: Stop execution and report error.
36: end if
37: end if
38: end if
39: Add cell intersection to SC list along with ~rin and ~rout.
40: end while
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denoted by the black arrows indicating that one starts from the singular characteristic and tags

all cells as intersected by the SP that are in-between the two red lines. Note, that depending on

the sign of the direction cosine µw the projection might potentially be in the opposite direction

but the same logic still applies. The quantities that we are ultimately interested in are the

intersection points of the SPs with the edges of type II cells since they will be used to separate

the flux segment within the tessellation procedure; these intersection points can be inferred by

projecting back the ~rin and ~rout points (red points) obtained in algorithm 2 along the black

arrows depicted in Fig. 3.4 to obtain the green points.

Figure 3.4: Schematic illustration of two mesh cells that are intersected by an SP. The projection
of the SC onto the domain’s face is depicted as dashed red line while the SP is blue. The arrows
indicate the procedure by which the intersections of the SP with the cell edges are inferred from
the two-dimensional tracking algorithm 2.

Tessellation of Type I and II Cells

For cells intersected either by one of the SPs or the SC it is necessary to determine the convex

hull of the two or three segments, respectively, which are then tessellated using the subroutines

from the Geompack90 package[52]. The difference between the type I and II intersections is

that the former segments are tessellated into tetrahedrons while the latter ones are tessellated

into prisms (triangular base). Since the intersections of the SPs are obtained by extruding the

projection of the SC back towards the SC it is always possible to tessellate type II cells into

prisms which enables a much faster integration algorithm.

65



www.manaraa.com

Algorithm 2 Tracking of the projected SC

1: Define : su = sign µu and sv = sign µv and m = µv
µu

and d = −1−su
2 mU + 1−sv

2 V

2: Set iu = 1 + 1−su
2 (Iu − 1) and iv = 1 + 1−sv

2 (Iv − 1) and
3: ~rout =

(
1+su

2 u0 + 1−su
2 U, 1+sv

2 v0 + 1−sv
2 V

)
and

4: ~rs = ~rout
5: while 1 ≤ iu ≤ Iu and 1 ≤ iv ≤ Iv do
6: ~c =

(
1+su

2 uiu + 1−su
2 uiu−1,

1+sv
2 viv + 1−sv

2 viv−1

)
7: κ = ‖~rs − ~c‖
8: if |mcu + d− cv| < κεmach then
9: Intersection with corner.

10: iu ← iu + su, iv ← iv + sv, ~rout ← ~c
11: else
12: if sv |mcu + d− cv| < 0 then
13: Intersection with edge along v-dimension.
14: iu ← i+ su, ~rout ← (cx,mcu + d)
15: else
16: Intersection with edge along y-axis.
17: iv ← iv + sv, ~rout ←

(
v−d
m , cy

)
18: end if
19: end if
20: Add cell intersection to pSC list along with ~rin and ~rout.
21: end while
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Tessellating type I cells

Let the set of points given by the union of the mesh cell’s corner points, the point where

the SC enters and leaves the mesh cell and all viable intersections of the SPs with the cell edges

be denoted by P (see illustration Fig. 3.5). The set of viable intersection points of the SPs with

the edges is determined by intersecting the three SPs with all edges whose direction vector is

not contained within the plane. Using the numbering scheme layed out in Fig. 2.1 the SPx is

intersected with the E2, E4, E5, E6, E7, E8, E10 and E12 edges, while the SPy is intersected

with the E1, E3, E5, E6, E7, E8, E9 and E11 and the SPz is intersected with the E1, E2, E3,

E4, E9, E10, E11 and E12 edges. For determining the intersection point the parametric forms

of the edges and the SP are equated:

~rs + βΩ̂n + γêP = ~rc + αêE[
−êE , Ω̂n, êE

] α

β

γ

 = ~rc − ~rs, (3.29)

where ~rs is defined in algorithm 1, ~rc is the appropriate corner point for the respective edge,

êP is the unit vector along x,y or z defining the SP and êE is the unit vector along the edge.

Then an intersection with an edge is viable if:

0 ≤ α ≤ 1

β ≥ 0

γ ≥ 0 (3.30)

After removing duplicate points from the set P2, the set P is split into three subsets P[W,E],

P[S,N ] and P[B,T ] containing points that border the segments illuminated by the west/east,

south/north and bottom/top domain boundaries, respectively, using the following rules

• The points ~rin and ~rout belong to all three segments.

• The viable intersection points of the SPx and the edges belong to P[S,N ] and P[B,T ] seg-

ments.

• The viable intersection points of the SPy and the edges belong to P[W,E] and P[B,T ]

segments.

• The viable intersection points of the SPz and the edges belong to P[W,E] and P[N,S]

segments.

2Points are considered to be identical if their distance in some norm is smaller than a specified threshold
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• Corner points belong to a single segment that can be determined by computing the ori-

entations with respect to the SPs ORx, ORy and ORz.

The sets P[W,E], P[S,N ] and P[B,T ] are the convex hulls of their respective segment. They are

stored in a list and a tessellation subroutine contained in the Geompack90 package[52] is used

to obtain a tessellation comprising them.

x

y

z

Figure 3.5: Illustration of the set of points used for the tessellation of type I intersected cells.
The SC is red, the SPx is blue, the SPy is brown and the SPz is green. The set P contains
all corners points, the points at which the SC enters and leaves the cell (red markers) and the
intersections of the singular planes with appropriate edges (blue, green and orange markers).

Tessellating type II cells

Since the tessellation of the type II intersected cells is just the extrusion of a two-dimensional

tessellation, i.e. a triangulation, we only discuss here how to triangulate the projection of the

cell along the direction of extrusion. The set of points P2D contains the corner points of the

rectangle (projection of the cuboid onto the domain’s face) and the intersection points of the

projection of the SC with the edges of the rectangle. In the degenerate case that an intersec-

tion point and one of the rectangle’s corners coincide, i.e. the distance is smaller than the set

threshold, the corner point is removed from P2D. Then the segments are separated into the
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subsets P2D,u and P2D,v which denote the convex hulls of the segments illuminated by the edge

along the u and v variable, respectively, using the following rules:

• The intersection with the edges belong to both segments.

• For the corner points (we denote by ~rc = (uc, vc), otherwise notation from algorithm 2):

If vc −muc − d < 0 then P2D,u

Else P2D,v. (3.31)

The two segments can then be triangulated using subroutines from the Geompack90 package

and subsequently the prisms are obtained by extruding the triangles through all cells contained

in the list pSC (algorithm 2) for a given pair of indices (iu, iv).

Integration Algorithm

From the tracking and tessellation procedures we have (1) a decomposition of all cells intersected

by the SC into tetrahedra such that each tetrahedron is completely within a single segment

(2) a decomposition of all cells intersected by the SPs into triangular prisms each of which

is completely within a single segment; and (3) cells that are exclusively in one of the three

segments. Thus, the angular flux is smooth within each tetrahedron or prism such that we can

perform integrations over their respective volume. In general we are interested in the spatial

Legendre moments of the angular flux within the mesh cells which can be expressed as the sum

of integrals over the tetrahedral/prismatic subvolumes Vs, s = 1, ..., S:

ψ
~i
~m =

1

V~i

∫∫∫
V~i

dV p~m (~r)ψn (~r) =
1

V~i

S∑
s=1

∫∫∫
Vs

dV p~m (~r)ψn,s (~r) , (3.32)

where Vs is the volume of subvolume s and ψn,s is the smooth angular flux within subvolume

s, i.e. s stands for [W,E], [S,N ] or [B, T ]. For the sake of a more compact notation for the

remainder of this chapter let the (u, v) set of spatial coordinates be augmented by w and µw

which are associated to the standard set of coordinates and direction cosines by:

[W,E] : w ← x, µw = µn

[S,N ] : w ← y, µw = ηn

[B, T ] : w ← z, µw = ξn.

69



www.manaraa.com

Then the integral Eq. 3.32 can be rewritten as:

ψ
~i
~m =

1

V~i

S∑
s=1

∫∫∫
Vs

dV pmu (u) pmv (v) pmw (w)

×

 Lu∑
lu=0

Lv∑
lv=0

aslu,lv

(
ū−

∣∣∣∣µuµw
∣∣∣∣ w̄)lu (v̄ − ∣∣∣∣ µvµw

∣∣∣∣ w̄)lv − Q

4πσt

 e
− σt
|µw|

w̄
+

Q

4πσt


=

Q

4πσt
δmu,0δmv ,0δmw,0

+
1

V~i

S∑
s=1

∫∫∫
Vs

dV pmu (u) pmv (v) pmw(w)

×

 Lu∑
lu=0

Lv∑
lv=0

aslu,lv

(
ū−

∣∣∣∣µuµw
∣∣∣∣ w̄)lu (v̄ − ∣∣∣∣ µvµw

∣∣∣∣ w̄)lv − Q

4πσt

 e
− σt
|µw|

w̄

 (3.33)

The remaining expression of the segment angular flux in the square brackets can symbolically

be multiplied out which results in the following expression:

ψ
~i
~m =

Q

4πσt
δmu,0δmv ,0δmw,0

+
1

V~i

S∑
s=1

Lu∑
lu=0

Lv∑
lv=0

Lu+Lv∑
lw=0

ĉslu,lv ,lw ∫∫∫
Vs

dV pmu (u) pmv (v) pmw(w)

× uluvlvwlw exp

(
− σt
|µw|

1− sign (µw)

2
W

)
exp

(
− σt
|µw|

sign (µw)w

)]
, (3.34)

where the coefficient ĉslu,lv ,lw can be obtained using the semi-symbolic polynomial multiplication

algorithms outlined in section C.1. We now explain how to compute the volume integral in Eq.

3.34 for the three types of cells (1) not intersected by SC or SPs, (2) intersected by a single SP

and (3) intersected by the SC.

Cells not intersected by SC or SPs

For cells not intersected by the SC or any of the SPs the mesh cell does not need to be divided

into subvolumes such that S = 1 and the integral over the subvolume in Eq. 3.34 can be written
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as: ∫∫∫
Vs

dV pmu (u) pmv (v) pmw(w)uluvlvwlw exp

(
− σt
|µw|

1− sign (µw)

2
W

)

× exp

(
− σt
|µw|

sign (µw)w

)
=

[∫ uiu

uiu−1

du pmu(u)ulu

][∫ viv

viv−1

dv pmv(v)vlv

]

×

[
exp

(
− σt
|µw|

1− sign (µw)

2
W

)∫ wiw

wiw−1

dw pmw(w)wlw exp

(
− σt
|µw|

sign (µw)w

)]
(3.35)

For the evaluation of Eq. 3.35 integrals of the form:

eb
∫ θiθ

θiθ−1

dθpmθ (θ) θlθeaθ (3.36)

have to be evaluated. Note, that the case a = b = 0 is permitted so the algorithm that computes

Eq. 3.36 needs to accommodate for this special case. The computation of the integral Eq. 3.36

is described in detail in section C.2. Thus, for cells not intersected by SC or SPs the evaluation

of the spatial flux moments reduces to computing a 2(Λ+1)(Lu+Lv) one-dimensional integrals

per mesh cell per discrete ordinate. For performance purposes all one-dimensional integrals for

a single discrete ordinate can be pre-computed, saved for further use as required by Eqs. 3.34

and 3.35. For the C∞ case the flux in all three segments is identical such that neither tracking

nor tessellation need to be performed and only integrals of the form given in Eq. 3.36 need to

be evaluated.

Cells intersected by single SPs

Cells that are intersected by a single SP feature a distinguished direction along the extru-

sion. It is easy to show that the direction of extrusion is never along the w-dimension so it

must be along either the u or the v directions. For the further development of the integration

routines let us assume that the direction of extrusion is along the u-dimension such that the

71



www.manaraa.com

integral in Eq. 3.34 can be written as:∫∫∫
Vs

dV pmu (u) pmv (v) pmw(w)uluvlvwlw exp

(
− σt
|µw|

1− sign (µw)

2
W

)

× exp

(
− σt
|µw|

sign (µw)w

)
=

[∫ uiu

uiu−1

du pmu(u)ulu

] [
exp

(
− σt
|µw|

1− sign (µw)

2
W

)
∫∫

As

dApmv (v) pmw(w)vlvwlw exp

(
− σt
|µw|

sign (µw)w

)]
(3.37)

The one-dimensional integral in the u-dimension in Eq. 3.37 is of the form of the integral given

in Eq. 3.36 such that only the double integrals over the triangle As needs to be discussed here

which are of the form:

eb
∫∫

As

dApmω (ω) pmθ(θ)ω
lωθlθ exp (aθ) (3.38)

The utilized integration algorithm for integrals of the form Eq. 3.38 is presented in section

C.3. For an efficient evaluation of the integral over the subvolume s (Eq. 3.37) the integral

along the direction of extrusion is pre-computed and saved while the integrals over the triangles

s ∈ 1, ..., S are computed on the fly.

Cells intersected by SC

The integration algorithm for cells that are intersected by the SC cannot take advantage of

the separability of the integral comprising Eq. 3.34. Therefore, integrals of the form:

eb
∫∫∫
Vs

dV pmν (ν) pmω (ω) pmθ(θ)ν
lνωlωθlθeaθ (3.39)

have to be evaluated. The pertinent algorithm is described in section C.4.

3.3 Error Norms

Throughout this work the spatial discretization error in the numerical solution of the SN equa-

tions has to be quantified. The angular pointwise error εn(~r) and the scalar pointwise error

ε(~r) are defined as the difference in the corresponding flux of the exact and spatially discrete
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solutions of the SN transport equations:

εn(~r) = ψn(~r)− ψhn(~r)

ε(~r) = φN (~r)− φhN (~r), (3.40)

The pointwise error is usually measured in some norm representing its magnitude over the

whole phase space. The most natural choice of norms is to use a continuous Lp norm applied

to the angular error[1]:

‖εn‖c,ψ,p =

 N∑
n=1

wn

∫
D

dV |εn|p
1/p

, (3.41)

or scalar pointwise error[11]:

‖ε‖c,φ,p =

∫
D

dV |ε|p
1/p

. (3.42)

Often, it is more convenient to compute the error using a discrete version of the continuous

error norms Eqs. 3.41 and 3.42 given by:

‖εn‖d,ψ,p =

 N∑
n=1

wn
∑
~i

V~i

∣∣∣ε~in∣∣∣p
1/p

‖εn‖d,φ,p =

∑
~i

V~i

∣∣∣ε~i∣∣∣p
1/p

, (3.43)

where V~i is the volume of the mesh cell Q′~i and εn and ε are the pointwise errors averaged over

this volume:

ε
~i
n =

1

V~i
(1, εn(~r))

ε
~i =

1

V~i
(1, ε(~r)) .

An important difference between the discrete and continuous error norms is that the latter

allow cancellation across the mesh cells Q~i because the averaging is performed before taking

the absolute values. It is then possible that the error εn 6= 0 at least for some ~r ∈ D is such

that ε
~i
n = 0 for all ~i, i.e. positive and negative contributions of the error cancel each other out.

Therefore the discrete error norms are really semi-norms. For a certain class of problems almost

exact cancellation of errors was observed in [44] and later attributed to a boundary layer that

forms for configurations with large total cross sections[53].

Another difference is that the discrete norms are tied to the grid on which the spatial
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averaging is performed. Within this work ψn and φ are known analytically and ψhn and φh

are known on the mesh characterized by mesh spacing h. Therefore, the analytical functions

are simply averaged on the h mesh and the differences ε̄
~i
n and ε̄

~i are easy to compute. If the

reference solution is obtained as a very fine mesh reference solution then either prolongation

of the numerical solution onto the fine mesh or restriction of the reference solution onto the

computational h mesh is necessary to compute ε̄
~i
n or ε̄

~i.

Typical examples of the Lp norms are the continuous and discrete infinity norms which

could be referred to as the maximum pointwise and maximum cell-wise errors, respectively.

Thus, convergence as h → 0 in these norms is sometimes referred to as pointwise and cellwise

convergence, respectively. Another choice that will be utilized within this work is the two-norm

which in contrast to the infinity norm may converge in C0 cases where pointwise and cellwise

norms do not converge. For the L2 it is easy to show that the discrete L2 norm is a truncated

version of its continuous counterpart. Thereby, the truncation is performed over the summation

of the modal expansion coefficients of the numerical solution within a cell. For further details

and a proof confer to section A.3.

In more practical applications, the user is often interested in the accuracy of a flux or

reaction rate within a certain subset of the domain Ds, e.g. the fission rate integrated over a

fuel rod:

‖φN − φhN‖s =

∣∣∣∣∣∣
∫
Ds

dV φN −
∫
Ds

dV φhN

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ds

dV ε (~r)

∣∣∣∣∣∣ . (3.44)

The difference with respect to the Lp error norms is that (1) before taking absolute values

the exact and computed reaction rates are integrated over the subregion and the difference is

computed and (2) within a mesh refinement study the subset of the domain is resolved by an

increasing number of cells. In contrast, for the error norms Eq. 3.41 through 3.43 the exact

and approximated fluxes are computed on a common mesh and the difference is computed for

each mesh cell.

Error norms such as Eq. 3.44 are often referred to as integral error norms, e.g. [18]. They

are found in [18] to converge with the theoretically predicted convergence order of two (for DD),

while an error norm similar to Eq. 3.43 converges with a reduced rate because of the typical

non-smoothness of the exact solution.

The choice of a particular error norm is application dependent; it should reflect features of

the quantity that the user is interested in as the ultimate goal of solving the transport equation.

If the user is interested in point values of the flux for example in a shielding application,

a pointwise or cellwise L∞ norm might be appropriate. If a region-averaged fission rate is

desired, an integral norm or an L2 norm might be good choices.

In this work we focus on volumetric quantities when it comes to the computation of accuracy.
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However, a user could demand the accuracy of the computed current across a surface instead

of the accuracy of the flux. The same discussion that applies to volumes applies to face based

quantities as well, i.e. their accuracy can be measured in Lp and/or in a region-averaged norm.

In [30] Azmy shows that depending on whether fluxes (volume based) or currents (face based)

are compared and their accuracy is compared, the conclusion on which is the more accurate

discretization scheme, in Ref. [30] AHOTN or AHOTC, might change: AHOTN computes more

accurate cell fluxes, but AHOTC provides more accurate currents.
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3.4 Lathrop’s Test Problem

The second test problem utilized within this work is a variation of Lathrop’s test problem first

published in [9] and later modified by Azmy[30]. Both references employ Lathrop’s test problem

for two-dimensional Cartesian geometry, while in this work the problem is extended to three

spatial dimensions by replicating the characteristics of the problems along x and y axes to the

z axis. The variant of Lathrop’s problem used within this work is a simple cuboid-in-cuboid

configuration depicted in Fig. 3.6.

The problem consists of two regions I and II, where region I contains an external distributed

source and region II is source-free. Each region features a homogeneous material composition,

but the materials in regions I and II may differ, and vacuum boundary conditions apply on

the external faces of region II. The flux in region II is driven by the leakage out of the source

region I, and thus decays exponentially towards the boundary of the domain. For the case

of homogeneous materials throughout the whole domain and four distinct total cross sections,

the center-line scalar flux along the x-axis is plotted in Fig. 3.7. The scattering ratio for

all selected total cross sections is set to c = 0.1, and the solution is obtained using linear

discontinuous spatial differencing, 1203 cells (∆x = ∆y = ∆z = 0.05 cm), and an S8 level

symmetric quadrature. A uniform source with a cell-averaged source strength of unity is located

in region I. As seen from Fig. 3.7, increasing the cross section leads to a more rapid drop of

the flux right across the boundary between region I and II.

Within the framework of this work, we are interested in the resilience of spatial discretization

methods to producing negative fluxes from non-negative incoming fluxes or distributed sources,

and therefore the optical thickness of the spatial cells is selected to be large by setting the total

cross section to large values. This means the flux is attenuated rapidly when crossing from

region I to II. Negative fluxes tend to occur in optically thick, source-free regions. Thus, the

described setup mimics a situation where negative fluxes are likely to occur.

Another important parameter for Lathrop’s test problem is the scattering ratio in region

II, because the presence of scattering reduces the likelihood of negative fluxes. Within a single

source iteration, the source term is fixed such that external and scattering source are indis-

tinguishable. Negative fluxes are a local phenomenon, i.e. they are not a deficiency of the

iteration process, of the discretization in angle3, nor are they related to the spatial mesh as

a whole. They are solely attributed to the local, within-cell solution uniquely determined by

the selection of the spatial discretization method. Therefore, increasing the scattering ratio is

effectively equivalent to having an external source in region II that reduces the risk of negative

fluxes. In section 5.2, the mechanism ensuring that sources, external fixed sources as well as

3Note, that in the presence of ray effects, negative fluxes can occur as a result of the hill-and-dale pattern of
the flux solution. This is a non-local effect.
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DI

DII

Region I

Region II

Figure 3.6: Illustration of Lathrop’s test problem for three-dimensional geometry. Region I
(red) contains the external source while region II (blue) does not feature an external source.
Therefore, the flux in region II is driven by the leakage from region I. Vacuum boundary
conditions apply on all external faces

scattering sources, always reduce the likelihood of negative fluxes will be explained in detail.

For the three-dimensional extension of Lathrop’s test problem employed in this work, the

material is selected to be homogeneous in regions I and II. The domain’s physical size is fixed

at ∆I = 2 cm and ∆II = 6 cm, and the domain’s optical thickness is controlled by setting the

total cross section to the desired value. Three values of the total cross section are utilized: 2,

4, and 16 cm−1, as listed in Table 3.4, and denoted by descriptors I, II, and III, respectively.

Further, three scattering ratios, also listed in Table 3.4, are employed denoted by descriptors
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Figure 3.7: Centerline fluxes for Lathrop’s test problems for set of increasing σt. Region I
containing the external distributed source is shaded in blue.

Table 3.4: Parameter variations for Lathrop’s test problem employed within this work.

Optical Thickness Scattering Ratio

Descriptor σt Descriptor c = σs
σt

I 2 1 0.1
II 8 2 0.5
III 16 3 0.9
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1, 2, and 3.

A particular instance of Lathrop’s test problem is uniquely determined by selecting an

optical thickness and a scattering ratio, e.g. L-I-1 would feature σt = 2 and c = 0.1. The

external source in region I is set to a constant, cell-averaged value of unity for all test cases.

Solutions to Lathrop’s test problem are obtained on six uniform meshes with (3 ·2k−1)3, k =

1, 2, ..., 6 mesh cells and an S4 quadrature. A reference solution for Lathrop’s test cases is not

required since the information desired within this work only concerns the resilience of the

target method to producing a negative flux solution from a non-negative distributed source and

incoming fluxes.

3.5 Negative Flux Metrics

In order to assess the resilience of spatial discretization methods against negative fluxes, the

extent of the negativity in the solution needs to be measured. This can be seen as the equivalent

of measuring errors by applying an appropriate and relevant error norm to the difference of

numerical and exact solution. Therefore, the same general comments apply here: the selected

metric is driven by the application, i.e. the metric should measure something that is relevant

to the user’s purpose from the computation.

First, it needs to be defined which quantity’s resilience against negative fluxes will be mea-

sured with the two obvious choices being the angular flux ψn and the scalar flux φ. Further,

negative fluxes can be understood in two fundamentally different ways, namely in a pointwise

and an average sense. The former implies that the solution (i.e. the flux shape) is negative if

it is less than zero at any point within the domain, while the latter only asserts a negative flux

if any cell- or face-averages are negative. Negative averages necessarily require the solution to

be negative at some set of points such that pointwise positivity implies positivity in an average

sense but not vice versa. Therefore, pointwise positivity is the stronger criterion. If positivity in

an average sense is the definition of choice then we also need to distinguish between measuring

negative volume averaged quantities and face averaged quantities.

Given that it is very cumbersome to check the solution for positivity in a pointwise sense4,

this work restricts its attention to checking average quantities. A total of four quantities exist

to which negative flux metrics can be applied: Negative volume/face averaged angular/scalar

fluxes. As negative cell averaged angular fluxes require at least one outflow average to be

negative as well, it is a logical choice to focus on face-based quantities for the angular fluxes.

However, scalar fluxes are typically used to compute reaction rates, which may be passed to

modules that simulate other physics. Reaction rates are in essence volume based quantities and

4It requires to reconstruct the flux shape within each computational cell, compute the minimum of this flux
shape and then check if it falls below zero.
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therefore, within this work only volume-averaged scalar fluxes are scrutinized for the occurrence

of negative fluxes.

With the choice being made that face-averaged angular fluxes and volume-averaged scalar

fluxes shall serve as quantities of interest within Lathrop’s exercise, the remaining discussion in

this section shall be focused on developing metrics that assign a single number representing the

“magnitude of negativity” to a given flux solution. The most straight forward metric is to count

the fraction of cells featuring negative cell-averaged scalar fluxes or at least one face-averaged

angular flux. The former variant is applied by Azmy in his work on nodal and characteristic

methods[30]. This metric can be easily extended to angular face fluxes with the additional

constraint that a cell can only be counted towards those comprising negative fluxes if all inflow

face-averaged fluxes are non-negative. Thus, the two discussed metrics denoted by τφ and τψ

can be written as follows:

τφ =

∑
~i

V
~iH
(
−φ̄h,~i

)
∑
~i

V~i

τψ =

N∑
n=1

∑
~i

{[ ∏
F∈EI

H
(
ψ̄h,

~i
n,F

)][ ∑
F∈EO

A
~i
FH

(
−ψ̄h,~in,F

)]}
N∑
n=1

∑
~i

∑
F∈EO

A
~i
F

, (3.45)

where H(x) is the Heaviside step function. Note, that deviating from Azmy’s definition in [30]

a volume/area based weighting was introduced to penalize negative averaged fluxes occurring

in/on large cells volumes/face areas.

The metrics defined by Eq. 3.45 will not accurately reflect the extent of negativity if most of

the negative fluxes occur in regions where the flux is negligibly small, i.e. effectively zero for all

practical purposes, and the user is either not interested in these regions or considers all fluxes

below a certain threshold to be effectively zero anyway. In this case it is reasonable to assume

that the occurring negative fluxes are also small in magnitude such that an improved/adapted

metric could require a negative flux’s magnitude to be greater than a threshold t > 0 to be
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counted:

τ tφ =

∑
~i

V
~iH
(
−φ̄h,~i − t

)
∑
~i

V~i

τ tψ =

N∑
n=1

∑
~i

{[ ∏
F∈EI

H
(
ψ̄h,

~i
n,F

)][ ∑
F∈EO

A
~i
FH

(
−ψ̄h,~in,F − t

)]}
N∑
n=1

∑
~i

∑
F∈EO

A
~i
F

. (3.46)

However, simple thresholding leaves the question open how to determine the threshold t.

Clearly, t is an application driven parameter that has to be set particularly by the user. For the

purpose of this work we want to derive general performance data for the selected discretization

methods and therefore metric Eq. 3.46 is unpractical since it would necessitate recomputing

results for various values of t. Therefore, a more viable approach is to not simply cut off negative

fluxes below a certain threshold but to weight them with their magnitude such that negative

fluxes with higher magnitude contribute more to the negativity metric than those with small

magnitude. The metric used within this work is given by:

τwφ =

∑
~i

V
~i
∣∣∣φ̄h,~i∣∣∣H (−φ̄h,~i)∑
~i

V~iφ̄~i

τwψ =

N∑
n=1

∑
~i

{[ ∏
F∈EI

H
(
ψ̄h,

~i
n,F

)][ ∑
F∈EO

A
~i
F

∣∣∣ψ̄h,~in,F ∣∣∣H (−ψ̄h,~in,F)
]}

N∑
n=1

∑
~i

∑
F∈EO

A
~i
F ψ̄

~i
n,F

. (3.47)

In Eq. 3.47 the cell/face-averaged fluxes in the denominator are chosen to be computed from

the exact flux solution, because in cases where negative fluxes tend to occur the numerically

computed fluxes may not be reliable so that when comparing across various methods, an unfair

bias may be incurred. The denominator of Eq. 3.47 serves as a normalization that makes

the negativity metrics τwφ and τwψ independent of the magnitude of the exact flux solution. In

practice, the reference solution in Eq. 3.47 is replaced by a fine-mesh solution computed with

a cell thickness much less than one mean free path that is verifiably positive everywhere.
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3.6 Thick Diffusion Limit Test Problem

The third test problem employed within this work is used for examining if the selected spatial

discretization methods possess the diffusion limit. This is important predominantly for radiative

transfer problems. In subsection 3.6.1 the diffusion limit of the continuous transport equation

is reviewed, and in subsection 3.6.2 a test problem is described that can be used for identifying

spatial discretization methods that do not have a diffusion limit.

3.6.1 Review of the Thick Diffusive Limit (continuous SN equations)

This review of the diffusion limit of the continuous (exact) one-speed transport equation follows

[54] and [7]; an additional excellent source is Larsen’s review article [55]. Consider the one-

group transport equation, Eq. 1.4, in the limit as σt = O
(
ε−1
)

and σa = σt−σs = O (ε), where

ε is a small parameter typically identified as the ratio of a particle’s mean free path and the

physical extent of the domain[55]. In the limit of ε→ 0, particles have a very small mean free

path, but since σa goes to zero, particles also survive, on average, many collisions. Therefore,

the physics of the transport process moves away from streaming particles’ movement along their

characteristic trajectory without collision, towards a Brownian type motion, characterized by

a zigzag motion pattern. In this limit, the solution of the transport equation can be shown

to satisfy a diffusion equation to leading order in ε, with boundary conditions that shall be

specified later.

To sharpen the statements of the previous paragraph, a rigorous analysis can be conducted

starting from a scaled version of the transport equation given by:

Ω̂ · ∇ψ +
σt(~r)

ε
ψ(~r, Ω̂) =

1

4π

(
σt(~r)

ε
− εσa(~r)

)
φ(~r) + ε

Q(~r)

4π
for ~r ∈ D

ψ(~r, Ω̂) = ψB(~r, Ω̂) if ~r ∈ ∂D and n̂ · Ω̂ < 0. (3.48)

The flux solution is then postulated to be a power series in ε:

ψ(~r, Ω̂) =
∞∑
p=0

εpψ[p](~r, Ω̂). (3.49)

Substituting Eq. 3.49 into Eq. 3.48, collecting equal powers of ε and some additional manipu-

lations lead to the following expressions:

ψ[0] =
1

4π
φ[0]

−∇ 1

3σt
∇φ[0] + σa (~r)φ[0] = Q(~r). (3.50)
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The resulting Eq. 3.50 supports the following conclusions: First, the leading order angular flux

is isotropic and equal to the leading order scalar flux up to a constant and second, the leading

order scalar flux satisfies a diffusion equation. These results are the formal findings that are

the commonly expressed in the (simplified) statement that the transport equation limits to the

diffusion equation within diffusive regimes (ε << 1). Additional analysis ([7], [54]) shows that

the boundary conditions of the diffusion limit problem are given by the following weighted,

half-range angular integral evaluated at the boundary:

φ[0] (~r) = 2

∫
n̂T Ω̂<0

dΩ̂W
(∣∣∣n̂T Ω̂

∣∣∣)ψB(~r, Ω̂) if ~r ∈ ∂D

W (µ) =

√
3

2
µH(µ), (3.51)

where H(x) is Chandrasekhars H-function[4].

The importance of these findings for numerical solution of particle transport problems are

significant and can be summarized as follows: A typical length scale across which the solution of

the transport equation changes is one mean free path mfp = 1
σt

= O (ε). Therefore, as the total

cross section increases, the solution changes significantly over length scales that tend to zero.

However, a typical length scale of the diffusion equation is the diffusion length L =
√

3σtσa =

O (1) which remains constant as ε→ 0. Numerical methods require grid sizes that are at most

of the order of the typical length scale of the solution to deliver reasonably accurate solutions.

Therefore, as σt → ∞, the mesh would typically need to be refined, which is too restrictive

for certain classes of problems even for today’s leadership class machines. However, as these

problems tend to be diffusive as well, a grain of hope exists that we can utilize coarse meshes

with h ≈ L and still get reasonable results from the discretization method.

Seminal work by Larsen, Morel, and Miller ([56], [57]) and later Adams[7] showed that

spatial discretization methods can produce accurate results for diffusive problems for meshes

characterized by L ≈ h >> mfp if the methods limit to a discretization of the Diffusion

equation when a scaling similar to that in Eq. 3.48 is introduced into the discretized set of

equations. Criteria encompassed in [7] will be described in detail in section 5.3, and later

utilized to perform analysis on several linear and constant methods from the selection of spatial

discretization methods for which this analysis has so far not been performed.

3.6.2 Thick Diffusion Test Case

The thick diffusion test case is adapted from [58] for three-dimensional geometries with Carte-

sian meshes. The domain is a uniform cube featuring an edge length of 1 cm. The diffusivity

of the problem is controlled via the parameter ε by setting σt = 1
ε , σa = ε, and Q = ε and thus
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the scattering cross section is σs = 1
ε − ε and the scattering ratio is c = 1− ε2. The boundary

conditions are vacuum, ψ(~r, Ω̂) = 0, on all inflow boundary faces. A set of decreasing small

parameters, ε = 0.1l with l = 0, ..., 5, is utilized to monitor the behavior of the participating

discretization methods in the thick diffusion limit.

A limiting diffusion problem (for ε→ 0) for this case is given by the following equation:

−1

3
∇2φ+ φ (~r) = 3 if ~r ∈ D

φ (~r) = 0 if ~r ∈ ∂D (3.52)

The solution of the transport problem for a fixed grid should approach this solution (from

above) for decreasing values of ε. The solution to Eq. 3.52 can be obtained analytically, but

we opted to utilize an existing, verified, diffusion solver available from previous course work to

compute the reference.

The investigation into discretization methods’ diffusion limit is incomplete as this test prob-

lem neglects the influence of non-homogeneous boundary conditions. The described test features

vacuum boundary conditions such that methods that do have the diffusion limit in the interior,

but limit to inaccurate boundary conditions might perform well in this test but would fail any

other test that features other types of boundary conditions.

A more comprehensive discussion of the quality of the methods’ boundary conditions in the

thick diffusion limit and their robustness in general is beyond the scope of this work. Therefore,

a simple test problem circumventing inhomogeneous boundary conditions and their behavior in

the diffusion limit is selected within this work.
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Chapter 4

Implementation of Spatial

Discretization Methods

4.1 Implementation of the DGFEM Methods

In this section the equations of the DGFEM methods derived using the Lagrange and complete

methods are discussed putting the emphasis on the implementation of the within-cell solution

process, i.e. assembly of the local system of equations, its solution and finally propagation of

outflow values to the downstream cells. In subsections 4.1.1, 4.1.2 and 4.1.3 the implementation

of the Lagrange DGFEM, complete DGFEM and linear discontinuous DGFEM is discussed,

respectively.

4.1.1 Lagrange Function Space

The Lagrange function space of order Λ is the collection of polynomials satisfying

f~m = xmxymyzmz for mx,my,mz = 0, ...,Λ. (4.1)

Using the monomial representation of the Lagrange function space is uncommon, because it

creates poorly conditioned local matrices for large expansion orders Λ. Typically, two sets of

basis functions are most commonly used: (1) The Legendre polynomials (confer to section A.1)

and (2) the Lagrange interpolatory polynomials (confer to section A.2). Note, that no matter

what basis is used, Legendre polynomials or Lagrange interpolation polynomials, as long as the

span of the utilized function space is identical as the one given by Eq. 4.1 the method is a

Lagrange DGFEM. Within this work we exclusively utilize Legendre Polynomials Eq. 2.32.

The following discussion is based on the general formulation of the DGFEM method Eq.

2.27 with the given definitions of the mass, stiffness and edge matrices. For fully defining the
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DGFEM method the explicit form of these matrices needs to be evaluated by substituting the

Lagrange function space Eq. 2.32 into their respective definitions. For the purpose of deriving

the equations for all discrete ordinates it is convenient to introduce differently scaled variables

within each mesh cell centered at smid:

ŝ = 2 sg (µs)
s− smid

∆s
p̂m (s) = Pm (ŝ) . (4.2)

The advantage of the scaled variable ŝ in comparison to the scaled variable used in section A.1

is that is runs from −1 at the inflow face to 1 at the outflow face regardless of the actual signs

of Ω̂n components.

Mass Matrix

First, a mapping of the three indices ~m into a single indexed vector ~f has to be defined. In this

work we select to use the following non-unique mapping:(
~f
)
mz+1+(Λ+1)my+(Λ+1)2mx

= p̂~m (~r) . (4.3)

Using the definitions of the mass matrix given by:

M =
(
~f, ~fT

)
, (4.4)

the elements of the mass matrix can be computed as:

(M)r,c =
(
p̂~k, p̂~m

)
=

[∫ xi

xi−1

dx p̂kx(x)p̂mx(x)

][∫ yj

yj−1

dy p̂ky(y)p̂my(y)

]

×

[∫ zk

zk−1

dz p̂kz(z)p̂mz(z)

]
, (4.5)

where r = kz + 1 + (Λ + 1)ky + (Λ + 1)2kx and c = mz + 1 + (Λ + 1)my + (Λ + 1)2mx. Using the

orthogonality property of the Legendre polynomials Eq. 4.5 can be evaluated to be a diagonal

matrix given by:

(M)r,c =
∆xi

2mx + 1

∆yj
2my + 1

∆zk
2mz + 1

δmx,kxδmy ,kyδmz ,kz . (4.6)
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Noting that only the mesh spacing in Eq. 4.6 may change from cell to cell, the mass matrix

can be split into a varying multiplier and an invariant reduced mass matrix M̂:

M = V
~iM̂(

M̂
)
r,c

=
δmx,kx

2mx + 1

δmy ,ky
2my + 1

δmz ,kz
2mz + 1

. (4.7)

The reduced mass matrix can be precomputed and stored for a given expansion order Λ.

Stiffness Matrices

The stiffness matrices accommodating the derivatives along the x, y and z direction are defined

as

Dx =
(
∇x ~f, ~fT

)
Dy =

(
∇y ~f, ~fT

)
Dz =

(
∇z ~f, ~fT

)
, (4.8)

respectively. Substitution of the Lagrange function space leads to the following expressions:

(Dx)r,c =

[∫ xi

xi−1

dx
dp̂kx
dx

p̂mx(x)

][∫ yj

yj−1

dy p̂ky(y)p̂my(y)

][∫ zk

zk−1

dz p̂kz(z)p̂mz(z)

]

=
∆yj

2my + 1

∆zk
2mz + 1

δmy ,kyδmz ,kz

[∫ xi

xi−1

dx
dp̂kx
dx

p̂mx(x)

]

(Dy)r,c =

[∫ xi

xi−1

dx p̂kx p̂mx(x)

][∫ yj

yj−1

dy
dp̂ky
dy

p̂my(y)

][∫ zk

zk−1

dz p̂kz(z)p̂mz(z)

]

=
∆xi

2mx + 1

∆zk
2mz + 1

δmx,kxδmz ,kz

[∫ yj

yj−1

dy
dp̂ky
dy

p̂my(y)

]

(Dz)r,c =

[∫ xi

xi−1

dx p̂kx p̂mx(x)

][∫ yj

yj−1

dy p̂ky p̂my(y)

][∫ zk

zk−1

dz
dp̂kz
dz

p̂mz(z)

]

=
∆xi

2mx + 1

∆yj
2my + 1

δmx,kxδmy ,ky

[∫ zk

zk−1

dz
dp̂kz
dz

p̂mz(z)

]
. (4.9)

For the evaluation of the derivative terms within the integration we first utilize the chain rule:

dp̂kx (x̂(x))

dx
=
dp̂kx
dx̂

dx̂

dx
= sg (µn)

2

∆xi

dp̂kx
dx̂

. (4.10)
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where similar expressions hold for the y and z derivatives. Now a change of variables from x

to x̂ is performed:

Trans. Jacobian: dx̂ =
∆xi

2sg (µn)
dx

sg (µn)
2

∆xi

∫ xi

xi−1

dx
dp̂kx
dx̂

p̂mx → 2sg (µn)

∆xi

∆xi
2sg (µn)

∫ sg(µn)

−sg(µn)
dx̂

dPkx (x̂)

dx̂
Pmx (x̂)

= sg (µn)

∫ 1

−1
dx̂

dPkx (x̂)

dx̂
Pmx (x̂) . (4.11)

Again, similar results can be obtained for the y and z dimensions. Further, the derivative of

the Legendre polynomial can be written as a sum over lower order Legendre polynomials:

dPkx
dx̂

=

kx−1∑
l=mod(kx+1,2)

(2l + 1)Pl (x̂) . (4.12)

Substituting Eq. 4.12 into the final result of Eq. 4.11 leads to:

sg (µn)

∫ 1

−1
dx̂

dPkx (x̂)

dx̂
Pmx (x̂) = sg (µn)

kx−1∑
l=mod(kx+1,2)

(2l + 1)

∫ 1

−1
dx̂ Pl (x̂)Pmx (x̂) , (4.13)

such that finally we can state an explicit formula for the stiffness matrix in the x direction:

(Dx)r,c = 2 sg (µn)
∆yjδmy ,ky
2my + 1

∆zkδmz ,kz
2mz + 1

kx−1∑
l=mod(kx+1,2)

δl,mx . (4.14)

Similar to the mass matrix, the stiffness matrices can be split into a varying prefactor and an

invariant reduced stiffness matrix:

Dx = sg (µn) ∆yj∆zkD̂x(
D̂x

)
r,c

= 2
δmy ,ky

2my + 1

δmz ,kz
2mz + 1

 kx−1∑
l=mod(kx+1,2)

δl,mx


Dy = sg (ηn) ∆xi∆zkD̂y(

D̂y

)
r,c

= 2
δmx,kx

2mx + 1

δmz ,kz
2mz + 1

 ky−1∑
l=mod(ky+1,2)

δl,my


Dz = sg (ξn) ∆xi∆yjD̂y(

D̂z

)
r,c

= 2
δmx,kx

2mx + 1

δmy ,ky
2my + 1

 kz−1∑
l=mod(kz+1,2)

δl,mz

 . (4.15)
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Outflow Face Matrices

The outflow face matrices on the East, North and Top faces are defined as

EE =
〈
~f (x̂ = 1) , ~fT (x̂ = 1)

〉
E

EN =
〈
~f (ŷ = 1) , ~fT (ŷ = 1)

〉
N

ET =
〈
~f (ẑ = 1) , ~fT (ẑ = 1)

〉
T
. (4.16)

Legendre polynomials pm (ŝ) evaluated at ŝ = 1 yield pm (ŝ = 1) = 1 and thus the elements of

the face matrices can be computed by:

(EE)r,c =

[∫ yj

yj−1

dy pmy (y) pky (y)

][∫ zk

zk−1

dy pmz (z) pkz (z)

]

(EN )r,c =

[∫ xi

xi−1

dy pmx (x) pkx (x)

][∫ zk

zk−1

dy pmz (z) pkz (z)

]

(ET )r,c =

[∫ xi

xi−1

dy pmx (x) pkx (x)

][∫ yj

yj−1

dy pmy (y) pky (y)

]
, (4.17)

where r = kz + 1 + (Λ + 1)ky + (Λ + 1)2kx and c = mz + 1 + (Λ + 1)my + (Λ + 1)2mx. The face

matrices have the same dimensions as the mass and stiffness matrix, i.e. (Λ + 1)3 × (Λ + 1)3.

Evaluating the integrals in Eq. 4.17 leads to:

(EE)r,c =
δmy ,ky∆yj

2my + 1

δmz ,kz∆zk
2mz + 1

(EN )r,c =
δmx,kx∆xi
2mx + 1

δmz ,kz∆zk
2mz + 1

(ET )r,c =
δmx,kx∆xi
2mx + 1

δmy ,ky∆yj

2my + 1
, (4.18)

Finally, the outflow matrices are split into a varying prefactor and an invariant matrix ÊF :

(EE)r,c = ∆yj∆zkÊE

(EN )r,c = ∆xi∆zkÊN

(ET )r,c = ∆xi∆yjÊT . (4.19)

Inflow Face Matrices

The inflow matrices are very similar to the outflow matrix with the marked difference that the

trial function expansion is taken from the respective upstream cell across the West, South or
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Bottom boundary (exterior trace) and the test functions are evaluated on the inflow faces of

the current cell (interior trace). Thus, the inflow face matrices can be written as:

EW =

〈
~f (x̂ = −1) ,

(
~f
~i−sµêx

)T
(x̂ = 1)

〉
W

ES =

〈
~f (ŷ = −1) ,

(
~f
~i−sη êy

)T
(ŷ = 1)

〉
N

EB =

〈
~f (ẑ = −1) ,

(
~f
~i−sξ êz

)T
(ẑ = 1)

〉
T

, (4.20)

where sµ, sη and sξ are the signs of µn, ηn and ξn, respectively. As the Legendre polynomials

pm (ŝ = −1) evaluate to (−1)m the resulting expressions for the elements of the inflow face

matrices cast in the form of varying prefactors and invariant matrices are:

(EW )r,c = (−1)kx
δmy ,ky∆yj

2my + 1

δmz ,kz∆zk
2mz + 1

= ∆yj∆zkÊW

(ES)r,c = (−1)ky
δmx,kx∆xi
2mx + 1

δmz ,kz∆zk
2mz + 1

= ∆xi∆zkÊS

(EB)r,c = (−1)kz
δmx,kx∆xi
2mx + 1

δmy ,ky∆yj

2my + 1
= ∆xi∆yjÊB. (4.21)

Solution Algorithm for a Single Mesh Cell

Having established explicit expressions for the entries of the mass, stiffness and face matrices,

we can now proceed to describe the algorithm to assemble and solve the local linear system for

each spatial mesh cell. The overall process can be divided into three stages: Assembling the

local system of equations, solving the resulting linear system of equations and upstreaming the

outflow face fluxes to neighboring cells. Finally, the obtained angular flux ~ψh,
~i

n is accumulated

into the scalar flux ~φh,
~i or angular moments thereof if anisotropic scattering is to be accounted

for.

Within the first stage the local linear system is assembled. From Eq. 2.27 it follows that

the local linear system can be written in the following form:

T~ψh,
~i

n = ~bh,
~i, (4.22)

where,

T = σtV
~iM̂− |µn|∆yj∆zkD̂x − |ηn|∆xi∆zkD̂y − |ξn|∆xi∆yjD̂z

+ |µn|∆yj∆zkÊE + |ηn|∆xi∆zkÊN + |ξn|∆xi∆yjÊT

~b = V
~iM̂~Sh,

~i + ~ψh,
~i

n,W + ~ψh,
~i

n,S + ~ψh,
~i

n,B, (4.23)
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and

~ψh,
~i

n,W = |µn|∆yj∆zkÊW
~ψ
h,~i−sµêx
n

~ψh,
~i

n,S = |ηn|∆xi∆zkÊS
~ψ
h,~i−sη êy
n

~ψh,
~i

n,B = |ξn|∆xi∆yjÊB
~ψ
h,~i−sξ êz
n . (4.24)

The invariant, reduced mass, stiffness and face matrices in Eq. 4.23 can conveniently be pre-

computed and stored before starting the solution procedure for the problem of interest. Thus,

Eq. 4.23 reduces to multiplying precomputed matrices with scalar values and adding them up

to obtain T. The right hand side vector ~b comprises the mass matrix multiplying the (total)

source vector and the upstreamed face fluxes given by Eqs. 4.24. It is unnecessary to store the

angular flux vectors ~ψh,
~i

n for all mesh cells within the mesh sweep, because the neighboring cells

only require the upstreamed face flux vectors ψh,
~i

n,W , ψh,
~i

n,S and ψh,
~i

n,B. Therefore, Eqs. 4.24 are

applied at the conclusion of the solution of cells ~i− sµêx, ~i− sη êy and ~i− sξ êz which is referred

to as the upstreaming phase and ~ψh,
~i

n,W , ~ψh,
~i

n,S and ~ψh,
~i

n,B are subsequently saved.

The solution of the linear system Eq. 4.22 is performed using LU decomposition[59] specif-

ically using the dgsev subroutine distributed with Lapack[59]. It needs to be stressed here that

the matrices local to cell ~i are of size (Λ + 1)3 × (Λ + 1)3 and therefore very small when com-

pared to the linear system that typically arises in continuous finite element methods whose

number of entries grows quadratically with the number of mesh cells. For the size of such local

matrices encountered in SN algorithms direct solution methods execute faster than iterative

methods.

Within the mesh sweep the scalar flux is accumulated on the fly, i.e. angular flux vectors
~ψh,~i are not saved for all~i. Note, that the trial/test functions used for deriving the finite element

mass, stiffness and face matrices are dependent on the angular direction through multiplication

of the sign of the appropriate direction cosines. The scalar flux is independent of the angular

directions and expanded in a Legendre polynomial series using the following scaled variables:

ŝ = 2
s− smid

∆s
p̂m (s) = Pm (ŝ) . (4.25)

Compatibility requires that the scalar flux is updated using the following prescription:(
~φh,

~i
)
r
←
(
~φh,

~i
)
r

+ wns
kx
µ s

ky
η s

kz
ξ

(
~ψh,

~i
n

)
r
, (4.26)

where r = kz + 1 + (Λ + 1)ky + (Λ + 1)2kx.

Depending on the order Λ the execution time needed to perform the steps for obtaining

91



www.manaraa.com

the mesh cell’s solution varies both in time and proportion with respect to each other. The

grind time, i.e. the execution time required for solving a single mesh cell for a single angular

direction n, and its breakdown into the constituent operations is discussed in subsection 4.3 for

all DGFEM methods utilized within this work.

4.1.2 Complete Function Spaces

The implementation of the DGFEM using the complete function space is analogous to the

implementation of its Lagrange counterpart. In fact, all equations derived in the previous

subsection still hold with the following modifications:

1. Each cell has a total of 1
6 (Λ + 3) (Λ + 2) (Λ + 1) degrees of freedom.

2. The Legendre polynomial orders kx, ky and ky vary in their respective bounds such that

kx + ky + kz ≤ Λ.

3. Row and column indices r and c of the mesh cell’s mass, stiffness and face matrices are

related to the kx, ky and kz by:

r = kz + 1− 1

2
ky (−3 + 2kx + ky − 2Λ) +

1

6
kx
(
11 + k2

x − 3kx(2 + Λ) + 3Λ(4 + Λ)
)
.

4.1.3 Linear Discontinuous Method

The linear discontinuous DGFEM method (LD) is the special case of the complete DGFEM

method of order Λ = 1. It is special in that the local matrix T is of size 4× 4 and therefore its

inverse can be precomputed thus saving execution time. Following [24] we decided to implement

the LD method distinctly from the arbitrary order complete DGFEM kernel in order to create

a highly optimized method.

For LD the local linear system specializing the general form Eq. 4.22 is given by:


a1,1 a1,2 a1,3 a1,4

−3a1,2 a2,2 0 0

−3a1,3 0 a3,3 0

−3a1,4 0 0 a4,4




ψ̄h,
~i

ψh,
~i

0,0,1

ψh,
~i

0,1,0

ψh,
~i

1,0,0

 =


b1

b2

b3

b4

 (4.27)
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where:

a1,1 = ∆yj∆zk |µn|+ ∆xi∆zk |ηn|+ ∆xi∆yj |ξn|+ V
~iσt

a2,2 = ∆yj∆zk |µn|+ ∆xi∆zk |ηn|+ 3∆xi∆yj |ξn|+ V
~iσt

a3,3 = ∆yj∆zk |µn|+ 3∆xi∆zk |ηn|+ ∆xi∆yj |ξn|+ V
~iσt

a4,4 = 3∆yj∆zk |µn|+ ∆xi∆zk |ηn|+ ∆xi∆yj |ξn|+ V
~iσt

a1,2 = ∆xi∆yj |ξn|

a1,3 = ∆xi∆zk |ηn|

a1,4 = ∆yj∆zk |µn| , (4.28)

Using Cramer’s rule on the linear system Eq. 4.27 explicit expressions for the entries in ~ψh,
~i in

terms of ai,j and bj can be obtained. These expressions are explicitly stated in D.1.

4.2 Transverse Moment Methods and HODD

Within this section, the implementation of the AHOTN, LL and LN methods and the HODD

methods are discussed. As the final form of the HODD equations is very similar to the form

of the AHOTN equations, the discussion of their implementation is grouped together within

this section. In subsection 4.2.1 a direction agnostic forms of the WDD, LL and LN equa-

tions is introduced, in subsection 4.2.2 the algorithms for solving weighted Diamond Difference

(WDD) and/or HODD equations are discussed and in subsection 4.2.4 a new approach to the

computation of the spatial weights for the AHOTN, LL and LN methods is presented.

4.2.1 WDD Equations in Direction Agnostic Form

The balance equations Eq. 2.23 can be recast such that the outflow and inflow fluxes always

appear in the same position. Recall that the East, North and Top face always denote outflow

faces and the West, South and Bottom faces denote inflow faces. In the framework of solving

the kernel equations, the outflow faces constitute unknowns while the inflow faces are simply
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data:

smxµ
|µn|
∆xi

(
ψh,

~i
n,E,~mx − (−1)mxψh,

~i
n,W,~mx

)
− 2sµ

|µn|
∆xi

[mx−1
2 ]∑
l=0

(2mx − 4l − 1)ψh,
~i

n,~m−(2l+1)ê1

+ s
my
η
|ηn|
∆yj

(
ψh,

~i
n,N,~my − (−1)myψh,

~i
n,S,~my

)
− 2sη

|ηn|
∆yj

[
my−1

2

]∑
l=0

(2my − 4l − 1)ψh,
~i

n,~m−(2l+1)ê2

+ smzξ
|ξn|
∆zk

(
ψh,

~i
n,T,~mz − (−1)mzψh,

~i
n,B,~mz

)
− 2sξ

|ξn|
∆zk

[mz−1
2 ]∑
l=0

(2mz − 4l − 1)ψh,
~i

n,~m−(2l+1)ê3

+ σtψ
h,~i
n,~m = Sh,

~i
n,~m. (4.29)

This set of equations is shared by the AHOTN, LL, LN and HODD methods.

For closure of the AHOTN equations the WDD auxiliary equations need to be written in a

direction agnostic form. The corresponding expressions are:

1 + αn,x
2

ψh,
~i

n,E,~mx +
1− αn,x

2
ψh,

~i
n,W,~mx =

Λ∑
l=0,even

(2l + 1)ψh,
~i

n,(l,my ,mz)

+ sµαn,x

Λ∑
l=1,odd

(2l + 1)ψh,
~i

n,(l,my ,mz)

1 + αn,y
2

ψh,
~i

n,N,~my +
1− αn,y

2
ψh,

~i
n,S,~my =

Λ∑
l=0,even

(2l + 1)ψh,
~i

n,(mx,l,mz)

+ sηαn,y

Λ∑
l=1,odd

(2l + 1)ψh,
~i

n,(mx,l,mz)

1 + αn,z
2

ψh,
~i

n,T,~mz +
1− αn,z

2
ψh,

~i
n,B,~mz =

Λ∑
l=0,even

(2l + 1)ψh,
~i

n,(mx,my ,l)

+ sξαn,z

Λ∑
l=1,odd

(2l + 1)ψh,
~i

n,(mx,my ,l)
(4.30)
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In Eqs. 4.30 the spatial weight along direction x is computed by

αn,x =

cosh |tn,x| −
Λ∑

mx,odd

en,mx

sinh |tn,x| −
Λ∑

mx,even
en,mx

en,mx =
2mx + 1

∆xi

∫ xi

xi−1

dxeσtx/|µn|Pmx(x), (4.31)

and equivalent expressions hold for the y and z directions. The actual computation of the

spatial weights is described in detail in subsection 4.2.4.

It is straight forward to obtain the corresponding auxiliary relations for HODD given Eqs.

4.30. HODD can be obtained as the limiting case of a general WDD method by taking

Λ is even: αn,k → 0

Λ is odd: αn,k →∞. (4.32)

This amounts to removing all terms in Eq. 4.30 that do (do not) contain αn for even (odd)

expansion orders.

Finally, the auxiliary relations for the LN and LL equations can also be written in a direction

agnostic form. It is difficult to devise a short hand notation for the set of equations and therefore

we opted to spell out the full set of nine equations per method here.

For the LN method:

1 + αn,x,0
2

ψh,
~i

n,E,(0,0) +
1− αn,x,0

2
ψh,

~i
n,W,(0,0) = ψh,

~i
n,(0,0,0) + 3sµαn,x,0ψ

h,~i
n,(1,0,0)

1 + αn,x,1
2

ψh,
~i

n,E,(1,0) +
1− αn,x,1

2
ψh,

~i
n,W,(1,0) = ψh,

~i
n,(0,1,0)

1 + αn,x,1
2

ψh,
~i

n,E,(0,1) +
1− αn,x,1

2
ψh,

~i
n,W,(0,1) = ψh,

~i
n,(0,0,1)

1 + αn,y,0
2

ψh,
~i

n,N,(0,0) +
1− αn,y,0

2
ψh,

~i
n,S,(0,0) = ψh,

~i
n,(0,0,0) + 3sηαn,y,0ψ

h,~i
n,(0,1,0)

1 + αn,y,1
2

ψh,
~i

n,N,(1,0) +
1− αn,y,1

2
ψh,

~i
n,S,(1,0) = ψh,

~i
n,(1,0,0)

1 + αn,y,1
2

ψh,
~i

n,N,(0,1) +
1− αn,y,1

2
ψh,

~i
n,S,(0,1) = ψh,

~i
n,(0,0,1)

1 + αn,z,0
2

ψh,
~i

n,T,(0,0) +
1− αn,z,0

2
ψh,

~i
n,B,(0,0) = ψh,

~i
n,(0,0,0) + 3sξαn,y,0ψ

h,~i
n,(0,0,1)

1 + αn,z,1
2

ψh,
~i

n,T,(1,0) +
1− αn,z,1

2
ψh,

~i
n,B,(1,0) = ψh,

~i
n,(0,1,0)

1 + αn,z,1
2

ψh,
~i

n,T,(0,1) +
1− αn,z,1

2
ψh,

~i
n,B,(0,1) = ψh,

~i
n,(0,0,1), (4.33)
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For the LL method:

1 + αn,x,0
2

ψh,
~i

n,E,(0,0) +
1− αn,x,0

2
ψh,

~i
n,W,(0,0) = ψh,

~i
n,(0,0,0) + 3sµαn,x,0ψ

h,~i
n,(1,0,0)

1 + αn,x,1
2

ψh,
~i

n,E,(1,0) +
1− αn,x,1

2
ψh,

~i
n,W,(1,0) = ψh,

~i
n,(0,1,0)

− 3
sµαn,x,1
sηty

(
ψh,

~i
n,N,(1,0) + ψh,

~i
n,S,(1,0) − 2ψh,

~i
n,(1,0,0)

)
1 + αn,x,1

2
ψh,

~i
n,E,(0,1) +

1− αn,x,1
2

ψh,
~i

n,W,(0,1) = ψh,
~i

n,(0,0,1)

− 3
sµαn,x,1
sξtz

(
ψh,

~i
n,T,(1,0) + ψh,

~i
n,B,(1,0) − 2ψh,

~i
n,(1,0,0)

)

1 + αn,y,0
2

ψh,
~i

n,N,(0,0) +
1− αn,y,0

2
ψh,

~i
n,S,(0,0) = ψh,

~i
n,(0,0,0) + 3sηαn,y,0ψ

h,~i
n,(0,1,0)

1 + αn,y,1
2

ψh,
~i

n,N,(1,0) +
1− αn,y,1

2
ψh,

~i
n,S,(1,0) = ψh,

~i
n,(1,0,0)

− 3
sηαn,y,1
sµtx

(
ψh,

~i
n,E,(1,0) + ψh,

~i
n,W,(1,0) − 2ψh,

~i
n,(0,1,0)

)
1 + αn,y,1

2
ψh,

~i
n,N,(0,1) +

1− αn,y,1
2

ψh,
~i

n,S,(0,1) = ψh,
~i

n,(0,0,1)

− 3
sηαn,y,1
sξtz

(
ψh,

~i
n,T,(0,1) + ψh,

~i
n,B,(0,1) − 2ψh,

~i
n,(0,1,0)

)
1 + αn,z,0

2
ψh,

~i
n,T,(0,0) +

1− αn,z,0
2

ψh,
~i

n,B,(0,0) = ψh,
~i

n,(0,0,0) + 3sξαn,y,0ψ
h,~i
n,(0,0,1)

1 + αn,z,1
2

ψh,
~i

n,T,(1,0) +
1− αn,z,1

2
ψh,

~i
n,B,(1,0) = ψh,

~i
n,(0,1,0)

− 3
sξαn,z,1
sµtx

(
ψh,

~i
n,E,(0,1) + ψh,

~i
n,W,(0,1) − 2ψh,

~i
n,(0,0,1)

)
1 + αn,z,1

2
ψh,

~i
n,T,(0,1) +

1− αn,z,1
2

ψh,
~i

n,B,(0,1) = ψh,
~i

n,(0,0,1)

− 3
sξαn,z,1
sηty

(
ψh,

~i
n,N,(0,1) + ψh,

~i
n,S,(0,1) − 2ψh,

~i
n,(0,0,1)

)
.

(4.34)

In Eqs. 4.33 and 4.34 the spatial weights are given by the following expressions:

αn,k,l =
coth |tn,x| − 1

|tn,x|

1− νl
|tn,x|

[
coth |tn,x| − 1

|tn,x|

] , (4.35)

where ν0 = 1 and ν1 = 0. The spatial weights Eq. 4.35 are computed via the method presented

in subsection 4.2.4.

The local linear system that is assembled and solved via substitution of the outflow un-
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knowns within the balance equations are derived and pre-solved as demonstrated in Appendix

D.2 and D.3 for LN and LL, respectively. For LN the encountered structure and complexity is

similar to the LD method given in Eq. 4.27 but LL creates a much more difficult local linear

system.

4.2.2 Assembly and Solution of Local Linear System

Within the AHOTN, LL, LN and HODD systems of equations two distinct sets of equations

coexists: the balance equations and the auxiliary equations. There is one balance equation for

each volume moment and one auxiliary relation for each outflow face moment. Therefore, the

two obvious approaches to solving the aforementioned systems of linear equations are:

1. Analytically solve the balance relations for the volume moments.

2. Eliminate the volume moments from the auxiliary equations.

3. Solve (potentially numerically) a linear system for the outflow face moments.

4. Compute the volume moments from the balance equations.

or

1. Solve the auxiliary equations for the face moments.

2. Eliminate the face moments from the balance equations.

3. Solve a linear system for the volume moments.

4. Compute the outflow face fluxes from the auxiliary equations.

The second approach is selected for implementation in this work for two main reasons: (a)

solving the balance equations analytically for the volume moments is algebraically tedious1, (b)

for Λ ≤ 2 the linear system solved for the first approach is not smaller than the linear system

of equations arising from the second approach; thus there is no advantage to using the first

approach for Λ ≤ 2.

The solution process within the AHOTN, LL, LN and HODD kernels consists of the following

steps:

1. Computation of the spatial weights (not necessary for HODD).

2. Assembly of the local linear system T~ψh,
~i = ~b.

3. Solution of the local linear system.

1System of balance equations is lower triangular so a recursion can be used to solve for the volume moments.
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4. Using the auxiliary relations to compute the unknown outflow face flux moments.

These steps are very similar to the process described for the DGFEM method in section 4.1

except that no matrix templates are used within the assembly stage of the local linear system

which makes the process slightly less efficient. Instead the process is implemented using various

loops.

The final matrix obtained for the AHOTN and HODD method can be symmetrized by

multiplying each row r of the linear system of equations with a multiplier cr given by

cr =
(−1)mod(ix,2) (−1)mod(iy ,2) (−1)mod(iz ,2)

(2ix + 1)(2iy + 1)(2iz + 1)

r = iz + 1 + (Λ + 1)iy + (Λ + 1)2ix. (4.36)

The resulting matrix is symmetric but not positive definite such that the dsysv[59] solver can

be applied for its inversion. However, it is found that the dgesv solver is significantly faster

than the dsysv routine for small matrices which is likely attributed to initial overhead that is

not saved in the later solution process when the matrix is too small. Due to the small size of

the local matrices the dgesv routine is used for the AHOTN and HODD methods.

In addition to the standard, general order AHOTN implementation, a hard-coded AHOTN-

1 version was created that will be referred to as AHOTN-1*. The difference from the standard

AHOTN implementation is that the expressions for the matrix elements, right hand side vector

and the upstream relations have been pre-computed in Mathematica and are explicitly applied

within the kernel such that no loops are necessary to perform the corresponding steps within

the kernel operation. The corresponding expressions are contained within the Mathematica

notebook listing in section D.4.

As for the LD methods the LL and LN methods result in linear systems of size 4 × 4.

Therefore, the solution of their respective linear systems of equations can be precomputed and

hard-coded which streamlines the execution of the LL and LN methods. For the structure of

the resulting matrices and their precomputed solutions consult sections D.3 and D.2.

4.2.3 Stopping Criterion of Source Iterations

Consistent for all methods, the source iterations are successfully terminated if the maximum

relative change of the cell-averaged scalar flux from iteration p to p + 1 is smaller than the

stopping criterion εs:

max
~i

∣∣∣∣∣1− φ̄h,
~i,p+1

N

φ̄h,
~i,p

N

∣∣∣∣∣ < εs. (4.37)
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Observe that stopping the source iterations is solely based on the cell-averaged scalar fluxes.

Higher-order cell moments convergence is not monitored at all. This is common practice in SN

transport codes, e.g. in DENOVO[24] and PARTISN[60].

4.2.4 Computation of the Spatial Weights

The spatial weights αm,n,l capture the within-cell transport physics included in the AHOTN, LL

and LN methods and therefore their stable and accurate computation is important. Using the

recursion relation Eq. 2.49 for computing the AHOTN weights, poses the risk of contamination

with numerical imprecision especially for small cell optical thicknesses and high polynomial

expansion orders. In addition, the computation of the spatial weights via the recursion relation

can consume a non-negligible fraction of the total solve time. Because of the particular problem

with the weight’s numerical stability, near-zero optical thickness expansion of the spatial weights

for the AHOTN method were devised in [41] that are stated in Eq. 2.50. The expressions in Eq.

2.50 solve the problem of the numerical instability and are very cheap to evaluate thus reducing

the burden of the weight computation that is part of the within-cell solve load to practically

zero.

However, the near zero expansion cannot be utilized across the whole range of optical

thicknesses so that a cut-off value of the optical thickness has to be used above which Eq.

2.49 is used and below which Eq. 2.50 is employed. Within this work a new approach was

implemented that (1) is numerically stable, (2) is applicable to all optical thicknesses and (3)

is computationally inexpensive. In Fig. 4.1 exact AHOTN weights for expansion orders 0 to

3 are plotted versus the optical thickness. The functions are smooth, monotonically increasing

for even orders and monotonically decreasing for odd orders, and limit to unity for increasing

optical thicknesses. Their asymptotic behavior for small optical thicknesses has already been

discussed and is expressed in Eq. 2.50.

The fact that the spatial weights depend only on one parameter, i.e. the optical thickness,

makes them amenable to an easy table lookup procedure. A table lookup is based on a pre-

computed list of base point values and an interpolation procedure associated for computing

values between two base points. The challenge for designing a lookup procedure for the spatial

weights is that for odd expansion orders the weight limits to infinity as t→ 0 requiring a very

fine “mesh” of base points close to unity to ensure accurate computation of the spatial weight

in the vicinity of t = 0. This would entail either maintaining a very fine grid of base points

everywhere or using a non-uniform spacing of the grid points. Both alternatives may lead to a

loss of efficiency of the table lookup algorithm: Maintaining a very fine grid everywhere would

lead to an unacceptably large number of base points to be saved, while a non-uniform grid

necessitates a more complicated/expensive algorithm for finding the two bounding base points
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Figure 4.1: Exact spatial weights for AHOTN plotted versus the cell optical thickness for
AHOTN-0, .., 3.

for interpolation.

The solution we found within this work to overcome this challenge is to utilize a piecewise

Pade approximation[61] as interpolation prescription between base points. In particular the

(1,1) Pade approximation given by:

αP (t) =
a+ bt

1 + ct
, (4.38)

is employed. The great advantage of this interpolant is that it naturally accommodates the

limiting behavior of the spatial weights for both even and odd expansion orders for t→ 0 and

t → ∞. Therefore, it is not necessary to maintain a very fine mesh even for t → 0 and odd

polynomial expansion orders.

The efficient algorithm for computing the spatial weights is based on using a uniform spacing

of the support points on the optical thickness axis so that the l-th support point is located at

position tl = l ·∆t for l = 0, 1, .... Let us for the moment assume that l may run up to infinity,
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i.e. the table has an infinite length. For each support point the exact Pade approximation

is computed and the respective values of al, bl and cl are saved. For the sake of practicality,

a Mathematica script listed in section B.3 was used to perform this task. The algorithm to

compute the spatial weights can then be stated as follows:

l = round

(
t

∆t

)
Retrieve al, bl, cl

αP (t) =
al + blt

1 + clt
. (4.39)

The computations involved in Eqs. 4.39 are cheap: they require a division followed by rounding

a real number to the nearest integer, an array lookup, two multiplications, two additions and

an additional division.

In reality, the lookup table must be truncated at some finite tL. As the spatial weights

approach unity for t → ∞ the error associated with truncating the table and extrapolating if

optical thicknesses t > tL occur can be bounded by |1− α (tL)| as long as:

lim
t→∞

aL + bLt

1 + cLt
= 1, (4.40)

because the Pade approximation exactly reproduces the value of the spatial weight at the last

support point αP (tL) = α(tL) and the extrapolated value does not leave the interval [1, α (tL))

for any value of t ∈ [tL,∞). For the tables used within this work condition 4.40 holds for all

utilized spatial expansion orders.

For the purpose of this work we found it to be sufficient to select ∆t = 0.01 and tL = 200.

A plot of the relative difference (in %) of the exact and Pade approximated spatial weights is

presented in Fig. 4.2 for orders Λ = 0, 1. The error is bounded above by 1 %.

4.3 Methods’ Grind Times

The solution of the SN equations is typically facilitated using the Source Iteration method

which, from an implementation point of view, is basically a loop wrapped around the space-

angle sweeps. The space-angle sweep is a (double)-loop wrapped around the execution of the

kernel subroutine that solves the equations for a single mesh cell. It is expected that the lion’s

share of the code’s execution time is spent within the Kernel subroutine. Therefore, the code’s

total execution time should be close to the execution time of the kernel times the number of

calls to the kernel. The time it takes to execute the kernel for a single mesh cell and angular

direction is defined to be the grind time of the method.

The grind time depends on the method, method order, implementation and compilation
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Figure 4.2: Relative error associated with Pade computed spatial weight for orders Λ = 0, 1 in
(%).

details, the hardware that the code is executed on and possibly many more factors, but it does

not depend on the size of the problem, i.e. the number of cells, angles, or energy groups. The

number of function calls to the kernel subroutine only depends on the size of the problem and

the iterative convergence properties and stopping criteria.

In Tables 4.1 through 4.4 the grind times ∆tg of all methods employed in this work are listed

along with a breakdown into the constituent operations performed within the kernel execution:

computation of spatial weight ∆tw, matrix/right hand side assembly ∆tb, solution of the linear

system ∆ts and upstreaming ∆tu.

The grind times are measured by executing the kernel within a loop 106 times, placing

timing commands cpu time before entering and after exiting the loop and dividing the total

execution time by the number of traversals through that loop. The implicit assumption is that

the execution time spent for administering the loop is negligible compared to the execution of

the respective kernel routines. Note, that for determining ∆tg no calls to cpu time are performed

within the kernel subroutines and therefore the timing method is non-intrusive.

For computing ∆tw, ∆tb, ∆ts and ∆tu calls to cpu time are placed within the kernel subrou-

tines at appropriate positions, i.e. before and after the blocks that perform the actions lumped

into the four identified constituent categories. Similar to measuring the grind time the kernels

are executed 106 times and five counters are incremented for ∆tj , j = w, b, s, u. In contrast

to measuring the grind time where a total of only two calls was required, four to five calls to

cpu time within every traversal through the kernel subroutine are necessary. The execution

time spent for a single call to cpu time is thereby comparable to some of the measured block

execution times. Measuring the block execution times is intrusive and distorts the measured

execution times. Thus, the actually measured block execution times will be inaccurate but we
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conjecture that their ratios are more accurate. Therefore, the ∆tj , j = w, b, s, u are computed

as follows:

∆tj =
∆t′j∑
i

∆t′i
∆tg, (4.41)

where ∆t′j are the measured block execution times. Still, the ∆tj , j = w, b, s, u presented in

Tables 4.1 through 4.4 should be regarded with caution due to the potential inaccuracy of their

measurement.

The fastest executing methods are as expected the zeroth order Diamond Difference and

the Linear Discontinuous method. These methods are followed by the Linear-Linear and the

Linear Nodal methods which are about five and 9 times slower, respectively. The five fastest

methods are either constant or linear approximation (with reduced number of cross moments)

and none of them need to call an external linear solver subroutine either because the linear

system is presolved or because no linear system has to be solved.

With increasing the expansion order, the grind time increases dramatically which is mainly

driven by the linear solve time ts which makes up the fastest growing part of the grind time: the

LU decomposition’s execution time scales cubically with the number of degrees of freedom of the

linear system of equations, i.e. Λ6. It is therefore not surprising that among the arbitrary order

methods the DGFEM with complete function space requires the least execution time, HODD is

only marginally cheaper than AHOTN, and DGFEM with Lagrange function space and Λ > 1

surprisingly takes the longest execution time. The reason why DGLA-Λ with Λ > 1 features

much longer execution times than AHOTN or HODD of the same order is the significantly more

expensive solution of the linear system of equations. We conjecture that the structure of the

DGLA matrices causes the Lapack routine dgesv to execute slower.

It should be stressed that the difference between AHOTN and HODD is not driven by

the additional computation of the spatial weights required for the AHOTN method but rather

by the smaller number of terms in the WDD equations. Finally, the hard-coded AHOTN-1*

method is significantly faster than the standard AHOTN-1 method and the SCB methods is

both faster than the DGFEM-L-1 method which it is derived from and the AHOTN-1 method.

The shorter execution time of SCB compared to DGFEM-L-1 is attributed to the fact that SCB

is a hard-wired Λ = 1 application while DGFEM-L-1 is a general DGFEM implementation.

4.4 A New SCT-Step Method

The exact solution of the SN transport equations may be discontinuous across the singular

planes if the inflow fluxes on the three inflow faces differ. In this case, the discontinuity will

lead to a non-convergence of the cells intersected by the singular planes (see [21] and [22]).

As these cells are of measure zero, i.e. the volume fraction assumed by them goes to zero as
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Table 4.1: Grind time and its constituents for the AHOTN, LL and LN methods in µs.

AHOTN-1 AHOTN-2 AHOTN-3 AHOTN-4 AHOTN-1* LL LN

∆tg 5.30 21.01 71.72 233.09 2.86 0.93 0.49

∆tw 0.69 0.94 0.79 1.37 0.49 0.22 0.13
∆tb 1.72 8.06 23.36 71.31 0.49 0.28 0.13
∆ts 1.95 9.75 44.56 152.61 1.44 0.24 0.12
∆tu 0.95 2.27 3.01 7.80 0.44 0.20 0.12

Table 4.2: Grind time and its constituents for the HODD method in µs.

HODD-1 HODD-2 HODD-3 HODD-4 DD

∆tg 4.54 18.92 62.20 211.57 0.12

∆tb 1.76 7.37 21.16 56.95 0.00
∆ts 2.02 10.02 38.98 151.32 0.00
∆tu 0.76 1.53 2.07 3.31 0.00

Table 4.3: Grind time and its constituents for the DGFEM Lagrange method of order 1 through
4, the simple corner balance method and the step characteristic method in µs.

DGFEM-L-1 DGFEM-L-2 DGFEM-L-3 DGFEM-L-4 SCB

∆tg 4.30 31.22 137.45 1167.50 3.04

∆tb 0.84 3.98 17.42 57.51 0.59
∆ts 2.25 21.58 116.36 1025.42 1.86
∆tu 1.20 5.66 3.67 84.64 0.59

Table 4.4: Grind time and its constituents for the DGFEM Complete method of order 1 through
4 and the LD method in µs.

DGFEM-C-1 DGFEM-C-2 DGFEM-C-3 DGFEM-C-4 LD

∆tg 1.72 6.42 17.78 53.10 0.11

∆tb 0.41 1.16 2.03 7.09 0.00
∆ts 0.80 3.52 12.55 38.09 0.00
∆tu 0.51 1.74 3.20 7.92 0.00
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the mesh is refined, convergence, however slow, is still warranted in any norm ‖ · ‖d,p except

p =∞. As the infinity norm indicates the largest cell wise error in the average flux, it cannot

converge to zero in a C0 configuration, because cells intersected by the singular planes do not

converge. Duo and Azmy[17] have previously stated this fact and labeled it “lack of pointwise”

convergence in the presence of discontinuities. However, in order to distinguish pointwise errors

from errors in the average, we shall refer to this particular lack of convergence as “cell-wise”.

In very simple terms, the deficiency of standard discretization methods when it comes to C0

configurations is the mixing of solution segments illuminated by different inflow boundaries. To

illustrate the issue, consider a cell intersected by the singular characteristic. Let the inflow on

the West, South, and Bottom boundary faces be ψ̄W , ψ̄S , and ψ̄B, respectively, and let them

all be different. Also assume that the attenuation within the domain is negligible and that no

external or scattering source is present. Clearly, this is not a problem of any practical relevance,

but we will show that standard discretization methods will not even obtain the correct answer

in case at least one of the ψ̄m differs from the other two. The exact cell-averaged angular flux

for this case would be:

ψ̄
~i
n =

ψ̄WV
~i
W + ψ̄SV

~i
S + ψ̄BV

~i
B

V~i
, (4.42)

where V
~i
m is the volume of the region illuminated by boundary face m.

Note, that this flux does not depend on the actual physical extent of the cell but on the

volume fractions V
~i
m/V

~i, which remain constant as long the cell’s aspect ratio and Ω̂n remain

constant. Without computing the volume fractions V
~i
m/V

~i correctly a discretization will not

produce the exact answer to the posed problem. In order for a method to obtain the right

answer, it needs to track the position of the singular planes and in some form (if not explicitly)

compute the volumes in Eq. 4.42 correctly.

In two-dimensional geometry Duo[17] suggested tracking of the singular characteristic line

through the mesh and applying a sub-cell approach in intersected cells to keep segments in

these cells isolated from each other. For the solution of the subcell equations, Duo used the

Step Characteristic method applied to each of the segments separately. For further details of

the Duo’s SCT algorithm, references [17] and [1] may be consulted. The results found in these

two references were that the SCT algorithm (1) restored convergence in the infinity norm for

C0 type problems and (2) improved accuracy and observed rate of convergence for C0 and C1

test problems. Encouraged by the success of Duo’s SCT algorithm we decided to implement a

similar algorithm for three-dimensional Cartesian geometry.

The immediate difference from the two-dimensional problem is the increased difficulty of

tracking the Singular Characteristic and Singular Planes. However, an efficient algorithm for

performing all necessary tracking operations was already implemented within this work for the

MMS3D code. The techniques developed for the MMS3D implementation reported in section
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3.2.3, in particular algorithms 1 for tracking the singular characteristic line and 2 for tracking

the singular planes can be used to obtain all necessary information to identify all cells intersected

by SC and SPs and split them into sub-cells according to the boundary face they are illuminated

from.

Although the tracking algorithm requires the use of quadruple precision to ensure that in-

tersections with edges and corners are handled adequately, the algorithm is still reasonably

efficient because its complexity is at most O ((max(I, J,K)))2, with the most expensive calcu-

lations done only during execution of algorithm 1. The basic step in algorithm 1 only has to

be repeated O (max(I, J,K)) times, and therefore the hope is that for a small number of cells

the execution time required for the tracking algorithm will grow like O (max(I, J,K)).

Timing data for the tracking algorithm for increasing max(I, J,K) are plotted in Fig. 4.3,

substantiating the described complexity estimates. The complexity of an SN flux solution is

O (I · J ·K) and, under the assumption that the cell aspect ratio is retained within each mesh

refinement step, its complexity is O
(

(max (I, J,K))3
)

. Therefore, in the limit of fine meshes,

the tracking computation will require negligible execution time compared with the mesh sweep

execution time.

From the tracking computation described in the context of the MMS test problem, the

convex hull P of the illumination segments in all cells intersected by SC or SPs are known. For

applying the sub-cell discretization for the cell, the volume of each of the slices V
~i
m and the area

that the slices cut out of the cell faces A
~i
m,F need to be computed.

Volume computation

The volume V
~i
m inscribed within the convex hull Pm may have any kind of polyhedral shape.

In order to automate the computation of its volume, the segment is therefore decomposed into

simple subvolumes. In the described discretization, the volume is tessellated into T tetrahe-

drons utilizing the geompack software package[52]. The volume V
~i
m is then computed as the

sum of the tetrahedras’ volumes:

V
~i
m =

T∑
t=1

V
~i
m,t

V
~i
m,t =

1

6
|det [~rt,2 − ~rt,1, ~rt,3 − ~rt,1, ~rt,4 − ~rt,1]| , (4.43)

where ~rt,l, l = 1, ...4, are the four corner points of the tetrahedron t, det takes the determinant

of the matrix argument and ~rt,l − ~rt,1, l = 2, 3, 4 are the columns of the said matrix.
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Figure 4.3: Scaling of tracking algorithm for test case with I = J = K and S4 level symmetric
quadrature. The plotted execution time is the average of the execution times obtained for the
different angular directions in the S4 quadrature set.

Face area computation

For the face area computation, consider first Fig. 4.4 depicting a face that is intersected by the

singular characteristic (left) and a face that is intersected by only one singular plane (right). In

Fig. 4.4 the red lines represent the intersection of the singular planes with the respective cell

face delineating the segment’s areas A
~i
m,F from each other. The thus created polygons feature

either three, four, or five corners so that easy formulae can be devised for the computation of

their areas. In case the polygon is a triangle, the area can be computed using Heron’s formula:

A∆ =
√
s(s− a)(s− b)(s− c)

s =
a+ b+ c

2
, (4.44)

where a, b and c are the edge lengths of the triangle. In case a quadrilateral or pentagram
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is encountered, the polygon is triangulated using the geompack software package[52], and the

area can be computed as the sum of the triangles’ areas:

A
~i
m,F =

T∑
t=1

A∆,t. (4.45)

4 Corners

4 Corners

5 Corners

Face intersectedby SC

5 Corners

3 Corners

Face not intersectedby SC

Figure 4.4: Decomposition of faces intersected by the singular characteristic and all singular
planes (left) and single singular plane (right). Faces can always be decomposed into simple
polygons featuring three, four, or five corners.

Subcell Discretization via the Step Method

First, the SN equation is integrated over the extent of the sub-cell to obtain the subcell balance
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equation: ∑
F

A
~i
m,F n̂

T
F Ω̂nψ̄

h,~i
n,m,F + σtV

~i
mψ̄

h,~i
n,m = V

~i
mS

h,~i, m = [W,E], [S,N ], [B, T ]. (4.46)

Equation 4.46 is exact but underdetermined because the outflow face fluxes and the cell-averaged

angular flux are unknowns and there is only one equation to determine them. Therefore, the

step approximation given by

ψ̄h,
~i

n,m,F = ψ̄h,
~i

n,m for n̂TF Ω̂n > 0, (4.47)

is used to make Eq. 4.46 amenable for solution. Solving for the cell-averaged angular flux gives:

ψ̄h,
~i

n,m =

V
~i
mS

h,~i +
∑

n̂TF Ω̂n<0

A
~i
m,F

∣∣∣n̂TF Ω̂n

∣∣∣ ψ̄h,~in,m,F
σtV

~i
m,t +

∑
n̂TF Ω̂n>0

A
~i
m,F n̂

T
F Ω̂n

. (4.48)

The outflow face-averaged fluxes are then computed using Eq. 4.47. Finally, for computing the

cell-averaged scalar flux within the original cell a volume weighted average is utilized:

φ̄h,
~i =

N∑
n=1

wn
∑
m

(
V
~i
m

V~i
ψ̄h,

~i
n,m

)
. (4.49)

The set of equations 4.47, 4.48, and 4.49 completely determine the SCT-Step method.

For the implementation of the SCT-Step method, the mesh sweep has to account for the

possibility of multiple distinct outflow segments on a single cell face as, for example, depicted in

Fig. 4.4. It is at the heart of the algorithm that the outflow averages are not mixed across the

boundaries imposed by the singular planes because mixing would defeat the initial purpose of

this algorithm: separating the solution slices illuminated by different boundary faces. Within

the described work, the SCT-Step algorithm was included into a standard sweep algorithm

that sweeps the cells in a certain order dependent on Ω̂n, for example the x-index runs fastest,

followed by the y-index and finally the z-index runs slowest.

The subcell expressions, Eqs. 4.47, 4.48 and 4.49, are applied locally, i.e. whenever a

cell intersected by at least a singular planes is encountered, Eqs. 4.47 and 4.48 are used to

compute the segment’s outflow and cell averages. Then the segment volume-averaged flux ψ̄h,
~i

n,m

is immediately collapsed into one cell-averaged scalar flux using Eq. 4.49.

This is in contrast to the treatment of the face-averaged fluxes, because they need to be

stored by illumination segment. Take for example a face that is intersected by the singular

characteristic as depicted on the left in Fig. 4.4: In this case, the cell downstream across this
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face from the one just solved, will be intersected by the singular characteristic, and the three

face-averaged segment fluxes will be needed as input for the three instances of Eq. 4.48 to be

solved. Similarly, for a face intersected by a single singular plane, two solution segments exist

and the two face-averaged segment fluxes will be required as input.

In the absence of reflective boundary conditions, at most na = J ·K + J + 1 angular face

information sets need to be stored (compared to at least I · J ·K scalar fluxes), and therefore

the SCT-Step method does not increase the memory consumption significantly to store three

instead of one angular face flux per cell face. The memory consumption for solving the angular

face fluxes therefore increases to n′a = 3na.

The SCT-Step method does not superimpose an additional grid over the Cartesian mesh, it

merely splits a mesh cell appropriately into segments and collapses them immediately before the

cell’s solution is complete. It is important to contrast this to the idea of creating an unstructured

mesh specifically to isolate the illumination segments from each other e.g. as suggested in [11].

The disadvantage of this latter approach is that the mesh becomes dependent on the angular

direction Ω̂n so that, for a practical algorithm, separate meshes need to be created for each

discrete ordinate and, in addition, restriction and prolongation operators need to be devised to

exchange information between these meshes.

The SCT-Step method is added to the selection of promising discretization methods because

it is expected to perform well in C0 configurations where it is expected to restore cell-wise

convergence.
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Chapter 5

Numerical Results

This chapter discusses numerical results obtained from the MMS, Lathrop and thick diffusion

limit test cases. The purpose of this chapter is twofold: first, the numerical results are directly

used to discuss the benefits and detriments of the contending methods culminating into a

qualitative ranking of what method performs well given a specific list of desired qualities.

Second, it sets the stage for the development of the decision metric by providing the necessary

data to compute a predictive fitness value for a particular application. In section 5.1 results

from the MMS test case are discussed, followed by results from Lathrop’s test case in section

5.2 and finally in section 5.3 both analysis and numerical results are provided regarding the

possession of the thick diffusion limit. Section 5.4 then concludes this chapter with a qualitative

comparison of the contending methods regarding the discussed performance aspects.

5.1 Accuracy and Efficiency: The MMS Test Case

Within this section, results from the MMS test suite are presented. First, the notion of efficiency

is introduced, followed by a description of the nomenclature and choice of parameters for the

various test cases, and finally a discussion and comparison across methods is performed based

on the obtained data.

5.1.1 Efficiency of Discretization Methods

Efficiency is the ability of a discretization method to produce accurate results within a short

execution time. The two obvious mechanism that improve the efficiency are the reduction of

execution time, i.e. reduction of the grind time, or increase of accuracy, i.e reduction of the

error on a given mesh.

Plotting the error measured in some norm versus the execution time, a strictly more efficient

method is characterized by its curve laying below the one of the less efficient method. However,
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under certain circumstances, e.g. when pre-asymptotically increasing errors or dips in the error

versus mesh refinement curves are observed, two method’s curves can intersect. In this case it

is unclear which method is the more efficient. A more practical approach to defining efficiency

is therefore to fix either execution time (“I need the results by this date/time.”) or error (“The

discretization error must be smaller than this threshold”) and define the more efficient method

as that with a smaller error or execution time, respectively.

The assessment of efficiency has gained prominence in the comparison of various variance

reduction methods for Monte Carlo simulations[62], [63]. Some variance reduction techniques

are designed to decrease the variance, others control the history population which is intended

to reduce execution time, either strategy may or may not increase execution time and variance.

For a fair comparison of various variance reduction techniques the FOM is defined:

FOM =
1

vT
, (5.1)

where v is the variance of the response of interest and T is the total execution time. Asymptot-

ically, the FOM approaches a constant value because the execution time becomes proportional

to the number of histories and the variance becomes inversely proportional to the number of

histories in the asymptotic regime. The higher the FOM, the more efficient the Monte-Carlo

method. Comparison of two Monte-Carlo methods (with different variance reduction tech-

niques) is strictly valid for the asymptotic regime after both FOMs plateaued.

For realistic SN problems, the irregularity of the exact solution limits the attainable order

of accuracy of utilized spatial discretization methods. Therefore, given a smoothness Cp and

assuming the solution is in the asymptotic regime, the error follows:

‖ε‖ = Cεh
λ, (5.2)

where h = max
~i

(∆xi,∆yj ,∆zk), Cε is a constant independent of h, and λ depends on p and the

utilized error norm. Further, the total execution time per source iteration of the discretization

method is the product of the number of cells nc, number of angular directions N , and the grind

time ∆tg:

T = ncN∆tg. (5.3)

It is observed within this work that the number of source iterations required to converge to a

given tolerance do not depend on the discretization method, expansion order, or mesh spacing

h. Certainly, this is a consequence of basing the stopping criterion solely on the cell-averaged

scalar fluxes as opposed to all moments. However, as the number of iterations to successfully

terminate the source iterations only depends on the stopping criterion εs and the problem

configuration, we can discuss performance of different methods based on the execution time per

112



www.manaraa.com

source iteration.

Assuming uniform mesh refinement, the number of mesh cells and h are asymptotically

related by:

h = Chn
−1/3
c , (5.4)

where Ch depends on the mesh alone. Defining C̃h = Cλh and combining Eqs. 5.2 through 5.4

leads to:

‖ε‖T λ/3 = CεC̃hN
λ/3∆tλ/3g = const. (5.5)

The left hand side of Eq. 5.5 is independent of h and therefore the right hand side, given

the solution is in the asymptotic regime, must also level off. It is desirable that the FOM should

increase with improved performance, hence we used the reciprocal of Eq. 5.5 as FOM for SN

spatial discretization methods:

FOM =
1

‖ε‖T λ/3
. (5.6)

The smaller the error and the execution time, the more efficient the discretization methods and

the larger the FOM. Therefore, Eq. 5.6 is similar in its meaning for comparison of discretization

methods as Eq. 5.1 is for Monte-Carlo methods.

5.1.2 Nomenclature of the Test Cases

Table 5.1: Variations in parameter space associated with the MMS test cases I through VII.
The domain ranges from x ∈ [0, X], y ∈ [0, Y ], and z ∈ [0, Z].

Case number σt c X (cm) Y (cm) Z (cm) Comment

I 1.0 0.2 1 1 1 -
II 2.0 0.2 4 4 4 -
III 2.0 0.2 10 10 10 only C1

IV 2.0 0.2 20 20 20 only C1

V 1.0 0.8 1 1 1 only C1

VI 1.0 0.2 1.4 1 0.8 -
VII 1.0 0.2 2 0.2 0.2 -

For assessment of the accuracy and efficiency of the set of discretization methods, a test

harness covering a range in parameter space is set up using the three-dimensional MMS code

MMS3D. The parameters that are being varied are the domain optical thickness, the scattering
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Table 5.2: Boundary conditions and auxiliary source for C0 and C1 cases.

Smoothness Q ψW ψS ψB

C0 4.8 3.0 2.0 1.0
C1 1.0 0.0 0.0 0.0

ratio, and the domain aspect ratio. The utilized cases are listed in Table 5.1. To fully specify a

test case, a parameter variation is selected from Table 5.1 and paired with the desired smooth-

ness, e.g. C0(I) uses the parameters from test case I with a discontinuous exact solution. The

solution’s smoothness is controlled by the inflow fluxes on the West, South, and Bottom faces,

and the auxiliary distributed source Q. In Table 5.2 utilized values of the auxiliary source Q

and the boundary conditions are listed for C0 and C1 problem setups.

All cases are meshed using a uniform spatial mesh featuring 4 · 2l, l = 0, ..., 6 mesh cells per

dimension.

The particular test cases are selected to cover a range in parameter space. Case I is the base

case, cases II-IV gradually increase the domain optical thickness, case V varies the scattering

ratio and finally cases VI and VII increase the domain optical aspect ratio.

5.1.3 Dependence of the Convergence on Norm, Smoothness and Method’s

Order

Table 5.3: Rate of convergence for C0(I) and C1(I) test case solved with AHOTN method of
order one through three. The rate of convergence is computed as the slope of the last two
plotted points within each graph.

C0 C1

L1 L2 L∞ Integral L1 L2 L∞ Integral

AHOTN-1 0.23 0.17 < 0 3.01 1.08 1.00 0.85 3.02
AHOTN-2 < 0.01 0.04 < 0 3.49 1.02 0.91 0.57 3.49
AHOTN-3 0.16 0.11 < 0 2.99 1.26 1.24 0.79 2.98

This section illustrates that different norms in conjunction with different solution smooth-

ness result in different convergence rates of the solution. If no special precautions are taken, the

114



www.manaraa.com

10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-5

10-4

10-3

10-2

L1
 E

rr
or

AHOTN-1
AHOTN-2
AHOTN-3

10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-4

10-3

10-2

L2
 E

rr
or

AHOTN-1
AHOTN-2
AHOTN-3

10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-4

10-3

10-2

10-1

L
∞

 E
rr

or

AHOTN-1
AHOTN-2
AHOTN-3

10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

In
te

gr
al

 E
rr

or

AHOTN-1
AHOTN-2
AHOTN-3

Figure 5.1: Convergence of the AHOTN method of orders one through 3 for the C0(I) test case.

convergence rate in any norm is limited by the solution smoothness and cannot be increased by

increasing the method’s order even if the error magnitude itself is decreased. This is illustrated

in Figs. 5.1 and 5.2, which depict the error measured in the discrete L1 (upper left), L2(upper

right), L∞(lower left), and integral norms (lower right) versus execution time for the C0(I) and

C1(I) test cases, respectively. The results in these plots are obtained using the AHOTN method

of order one, two, and three on uniform meshes of size h = 0.5l, l = 2, ..., 7. Figures 5.1 and 5.2

are augmented by Table 5.3, listing the convergence orders for the AHOTN method depending

on the employed error norm and the smoothness of the underlying exact solution.

A word of caution regarding rates of convergence is in order here: convergence rates are truly
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Figure 5.2: Convergence of the AHOTN method of orders one through 3 for the C1(I) test case.

meaningful only in the asymptotic regime where the error is dominated by the leading order

term. In contrast to two-dimensional results, as for example reported in [1] and [53], sufficient

mesh refinement for reaching the asymptotic regime is often impossible in three-dimensional

geometry, especially in the presence of discontinuous exact solutions (C0). Therefore, the stated

rates of convergence for the C0 test cases should be regarded with caution. Errors in the

asymptotic regime appear as straight lines in a log-log error versus mesh spacing/execution

time plot. A typical indicator could be three consecutive points that deviate only insignificantly

from a line drawn through two of them. From Fig. 5.1 it is apparent that none of the errors

are truly in the asymptotic regime. When looking at the C0 results obtained with the AHOTN
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Figure 5.3: Convergence of selected other method of orders one and two for the C0(I) test case.

method in Fig. 5.1 measured in the L1 and L2 norm, one could draw the conclusion that the

error does not converge with mesh refinement. However, with further mesh refinement that

is impossible to realize due to computational memory limitations, convergence to the exact

solution is expected. For further support of convergence of the error measured in the L1 and

L2 norm, Fig. 5.3 depicts errors associated with solutions of various discretization methods

of orders one and two for the C0(I) test case. On coarse meshes, the error may increase with

mesh refinement or even decrease initially and then increase again. This behavior is associated

with non-asymptocity of the solution and we shall elaborate on it in section 5.1.4. With further

mesh refinement, the error begins to follow a straight line indicating slow but steady decrease

of the error with further mesh refinement and thus convergence in the L1 and L2 norms.

As pointed out in Refs. [21], [22], and [11] the rate of convergence in realistic transport

problems is (1) limited by the smoothness of the underlying exact solution, (2) may be fractional

(not integer) and may depend on the order and type of the utilized norm. Figures 5.1 and 5.2

illustrate these facts. Even when increasing the expansion order from one to three, the observed

orders of accuracy do not increase for each of the two degrees of smoothness and four norms.

Also, the C0 case exhibits significantly smaller observed orders of accuracy for all Lp norms and

non-convergence of the discrete L∞ norm, i.e. lack of cell wise convergence. All these facts are

well reported in the above references and this section only serves the purpose of showing that

these references’ conclusions made in two-dimensional configuration are valid for three spatial
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dimensions as well.

An additional observation from Figs. 5.1 and 5.2 is that the integral error norm exhibits an

observed order of convergence of about three for both the C0 and C1 cases. This is remarkable

for two reasons: (1) the observed accuracy is much larger than the one observed for Lp norms

and (2) the rate is identical for the C0 and C1 test cases and does not vary significantly with

increasing Λ.

In case the underlying solution is discontinuous, the mode of convergence manifests the

isolation of the cells intersected by the singular characteristic/singular planes that form a region

of measure zero[1] as h → 0. As stated in section 4.4, without special precaution, a numerical

method cannot obtain the right answer (or approximation thereof) for a cell that contains a

discontinuity. The fraction of cells nSP affected by singular planes is proportional to

nSP /nc ∝ n
d−1
d

c /nC ∝ n
−1
d
c , (5.7)

where nc is the total number of cells and d is the dimensionality of the problem. The fraction

of cells affected by the singular planes in 3D decreases slower than for problems in two spatial

dimensions.

We conjecture the reason for significant mesh refinement to be necessary for a convergent

behavior to emerge is that initially all or at least most mesh cells are affected by the singular

characteristic and/or singular planes, and only when this set of cells is sufficiently isolated can

a reduction of error take place. Initial increase in error is caused by cancellation of errors on

the coarser meshes. The exact mechanism that leads to cancellation of errors is discussed in

section 5.1.4. In contrast, the fraction of cells affected by the singular characteristic in two

spatial dimensions as reported in [1] diminishes quicker than in 3D.

5.1.4 Cancellation of Errors

Cancellation of error is a process that occurs when pointwise errors are averaged over a subregion

of the domain before applying an absolute value. When comparing the two error norms ‖ ·‖c,ψ,2
and ‖ · ‖d,φ,2 given by Eqs. 3.42 and 3.43, respectively, we recognize that for the latter error

norm the difference of exact and numerical solution is first averaged before taking an absolute

value, allowing positive and negative (pointwise) contributions to offset each other. Simplifying

to one spatial dimension, this describes a case where:

∫
D

dx |ε| >
∑
i

∆xi

∣∣∣∣∣ 1

∆xi

∫ xi

xi−1

dxε

∣∣∣∣∣ . (5.8)
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A candidate measure for the cancellation of error Ca is:

Ca =

∫
D

dx |ε| −
I∑
i=1

∣∣∣∣∣
∫ xi

xi−1

dxε

∣∣∣∣∣ . (5.9)

Breaking up the first integral over the domain into a sum of integrals over the cells gives:

Ca =
I∑
i=1

(∫ xi

xi−1

dx |ε| −

∣∣∣∣∣
∫ xi

xi−1

dxε

∣∣∣∣∣
)

=
I∑
i=1

Cai. (5.10)

Further, it holds that:

Ca =
∑
i

Cai ≤ I max
i

Cai ≤
C̃

h
max
i

Cai, (5.11)

where C̃ is a constant independent of h. It can be shown that Cai decreases with mesh refine-

ment if the function ε possesses bounded first partial derivatives:

Cai =

∫ xi

xi−1

dx

∣∣∣∣∣ε (xmid) +

[
dε

dx

]
xmid

(x− xmid)

∣∣∣∣∣−∆xiε̄

Cai ≤ ∆xi

ε (xmid)− ε̄︸ ︷︷ ︸
O(∆x2

i )

+

∣∣∣∣∣
[
dε

dx

]
xmid

∣∣∣∣∣
∫ xi

xi−1

dx |x− xmid|︸ ︷︷ ︸
∆xi/4

Cai ≤ C̃ ′ih
2, (5.12)

where C̃ ′ is a constant independent of h. Using Eq. 5.12 and Eq. 5.11 gives:

Ca ≤ C̃ ′iC̃ max
i

h. (5.13)

Equation 5.13 demonstrates that cancellation of errors reduces as the mesh is refined if the

error is differentiable over the domain.

Cancellation of error for C0 Results

On very coarse meshes, most cells are either intersected by at least one of the singular planes or

are in the range of influence of the singular planes. The main instrument for reduction of error

is to isolate the cells affected by the singular planes. In other words, the global Lp, p <∞ error

norm decreases not because the error everywhere decreases, but because the volume comprising

the non-decreasing error contributions decreases.

On coarse mesh cells, the pointwise distribution of the error can vary greatly over the extent

119



www.manaraa.com

10-2 10-1 100 101 102 103 104

Execution Time (sec.)

10-3

10-2

10-1

100

L2
 E

rr
or

DGC-1 Discrete
DGC-1 Continuous
DGC-2 Discrete
DGC-2 Continuous

Figure 5.4: Comparison of continuous ‖ · ‖c,ψ,2 norm and discrete ‖ · ‖d,φ,2 norm of the error for
C0(I) test case solved using the complete DGFEM method of order Λ = 1.

of the cell. This situation supports cancellation of errors as demonstrated in Eq. 5.12. When

the mesh is refined just once starting from a coarse mesh, positive and negative contributions

may be isolated from each other such that one daughter mesh cell contains all (or most) of

the positive and another contains all (or most) of the negative contributions. As averaging is

performed on a mesh cell basis cancellation as on the parent mesh cannot occur and therefore

the error increases with mesh refinement. Cancellation of error is impossible to predict. It

may occur to a great extent on one mesh, but disappear with a single mesh refinement with

the possibility to reemerge later in the mesh-refinement process. We may refer to this as the

volatile behavior of cancellation of error.

Figure 5.4 illustrates the occurrence of cancellation of error when solving the C0(I) test

case using the complete DGFEM method of orders Λ = 1, 2. When measured in a discrete L2

norm applied to the scalar flux the error on coarse meshes does not follow a “well-behaved”
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decreasing trend with mesh refinement but rather increases or even decreases and then increases

again (DGC-2). When measuring the error in a norm that does not allow cancellation of errors

(for example the ‖·‖c,ψ,2 norm), the described behavior vanishes and the error follows a straight

line from the outset.

Cancellation of error is more pronounced in the presence of non-smooth solutions because

both the exact and the approximate solution are less well-behaved. Approximate solutions to

non-smooth test-cases often feature unphysical oscillations in the vicinity of the non-smoothness.

These oscillations actually benefit cancellation of error, because the shape of the pointwise error

distribution will then oscillate around a very small mean but with potentially large amplitude.

Cancellation of error for Integral Norm Results
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Figure 5.5: Integral error (1/8 subcube) and discrete L1 scalar flux error (for the same region)
for test C1(I) solved with the Linear-Linear method.

Among the set of error norms utilized within this work the integral error norms allow
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most cancellation of errors because absolute values are applied after fluxes are averaged over

subdomains rather than single mesh cells. Therefore, cancellation of errors does not follow a

bound as in Eq. 5.12 or more precisely h as used in Eq. 5.12 is constant for all meshes in the

mesh refinement study.

Following Eq. 5.9, a measure for the cancellation of error for the integral error norm is given

by:

CaI =

∫
Ds

dx |ε (x)| −
∣∣∣∣∫

Ds

dxε (x)

∣∣∣∣
=

∫
Ds

dx |ε (x)| −
∑
i∈Ds

∣∣∣∣∫
∆xi

dxε (x)

∣∣∣∣
+

∑
i∈Ds

∣∣∣∣∫
∆xi

dxε (x)

∣∣∣∣− ∣∣∣∣∫
Ds

dxε (x)

∣∣∣∣


= Ca +

∑
i∈Ds

∣∣∣∣∫
∆xi

dxε (x)

∣∣∣∣− ∣∣∣∣∫
Ds

dxε (x)

∣∣∣∣
 . (5.14)

The first term in Eq. 5.14 is the measure of cancellation when going from a continuous L1 norm

to a discrete L1 norm and it has been shown to decrease with mesh refinement in Eq. 5.13.

Therefore, its contribution to the total Ca diminishes as the mesh is refined. The second term

measures the cancellation when going from a discrete L1 norm to an integral norm. It generally

does not diminish with mesh refinement. Therefore, even in the limit h → 0 cancellation of

error does not vanish if the error is measured in an integral error norm.

As the first summand in Eq. 5.14 is difficult to compute and also diminishes with mesh

refinement, we only illustrate the second summand via Fig. 5.5, which plots the integral error

and ‖‖d,φ,1 error for the lower, left eighth subcube for the C1(I) case solved with the LL method.

The space between the two curves is the amount of cancellation, Ca, associated with the second

summand in Eq. 5.14.

Of special interest are the dips in the integral error norm’s curve occurring for mesh re-

finement levels two and four. These dips are absent for the L1 error curve. The dips in the

integral error norm curve underscore the volatility of cancellation of error that may be present

to varying degrees on two different meshes. However, Fig. 5.5 also shows a general trend that

the difference between the integral error and the L1 error is growing with mesh refinement

suggesting that the cancellation between the L1 and integral error norm consists of two parts:

a consistent, monotonically growing part and a volatile part that is present only on a subset of

the utilized meshes.
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Figure 5.6: Comparison of the performance of the SCT method (order Λ = 0) and various other
method of order Λ = 1 for the C0(I) test case.

5.1.5 Performance of the SCT-Step Method

The implemented SCT method was created for mediating the detrimental effect that discontinu-

ous exact solutions have on the accuracy of standard methods. Its performance under smoother

conditions is not expected to be competitive from the computational efficiency perspective be-

cause it is only first order accurate (SP intersected cells are solved using the Step method). For

the C0(I) and C0(II) test cases the SCT method’s performance is compared (in various discrete

norms) to various other methods of order one through three in Figs. 5.6 through 5.8.

In general, the SCT method exhibits a comparatively large error on coarse meshes and it
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Figure 5.7: Comparison of the performance of the SCT method (order Λ = 0) and various other
method of order Λ = 1 for the C0(II) test case.

is also rather expensive because a large fraction of the execution time is used for the tracking

procedure. Compared to other discretization methods, SCT’s performance on the coarsest

meshes is not competitive. However, for the first few mesh refinement steps the error diminishes

faster than O(h) and the execution time does not increase over-proportionally fast, because the

expensive tracking computation only scales with the cubic root of the number of mesh cells.

The asymptotic rate of convergence is, however, only O(h) due to utilizing the step method for

cells intersected by the SPs.

For both the C0(I) and C0(II) cases, the SCT method eventually becomes more efficient

than all other methods (including high-order methods) in the L1 and L2 error norms: for the
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Figure 5.8: Comparison of the L2 norm performance of the SCT method (order Λ = 0) and
various other method of orders Λ = 1 to Λ = 3 for the C0(II) test case.
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Figure 5.9: Comparison of the performance of the SCT method (order Λ = 0) and various other
method of order Λ = 1 for the C1(I) test case.
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C0(I) setup the cross-over occurs earlier than for the C0(II) case. For both test cases, the SCT

is the only viable alternative to reducing the non-integral discretization error significantly below

10−2 due to the extremely small orders of accuracy observed for the other competing methods.

In the L∞ norm the SCT method restores cell-wise convergence and is thus the only viable

method available in the set of selected schemes. This is a significant property of the SCT

method for example for shielding applications where shadowing effects often lead to discon-

tinuous solutions. If for example the dose rate is desired everywhere behind a shield, then

convergence should be ensured everywhere to ensure that proper numerical estimates of the

flux are obtained.

The SCT method is not competitive with the standard methods when the flux is at least

continuous (C1) or if the error is measured in the integral error norm regardless of the config-

uration’s smoothness. For both scenarios the reason for this outcome is obvious: the integral

norm allows a convergence order of about three, while C1 problems allow a convergence order

of unity. The SCT method invests additional resources into tracking SC and SPs but still the

underlying Step method is only first order accurate; in addition the Step method is a really poor

approximation, even among first order accurate methods.

In conclusion, the SCT method proved superior to standard methods for cellwise error norms

when the flux is discontinuous. It is less efficient if the flux is at least C1 because its current

implementation is limited to first order accuracy and uses the inaccurate Step method. However,

the SCT performance for the C0 test cases impressively demonstrates the value of a larger

convergence order. Using the SCT algorithm in conjunction with higher-order discretization

schemes could create a method that allows for convergence orders equal to or larger than two.

An additional observation that does not pertain to SCT’s efficiency is that it does not exhibit

the irregular behavior, i.e. non-monotonic decrease in error with mesh refinement, typical of

other discretization methods in the presence of discontinuous angular fluxes. This behavior

was attributed to cancellation of error in section 5.1.4 where it is demonstrated that using an

error norm that allows cancellation of errors is a necessary condition for the dips in in the error

versus time curves to appear. Further, non-smoothness of the exact solution was found to be a

factor supporting cancellation of errors. For example, in Fig. 5.6 the SCT-Step method curve

does not suffer from pre-asymptotic behavior associated with cancellation of error.

5.1.6 HODD versus AHOTN

The HODD method is related to the AHOTN method in the sense, that for optically thin

cells, the AHOTN method asymptotically approaches the HODD method (see section B.4).

The HODD method executes about 10-15% faster than the AHOTN method of the same order

as indicated by the grind times in Tables 4.1 and 4.2. For optically thin cells, the solutions
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provided by the AHOTN and HODD methods are virtually identical; and therefore the HODD is

slightly more efficient under these conditions (for example Fig. 5.10 C1(I) test cases). However,

the HODD method’s advantage is marginal even under circumstances that favor it most. For

optically thicker problems, the HODD method is significantly less accurate and therefore less

efficient than the AHOTN method, which is reflected in the HODD curves depicting test cases

C1(III) and C1(IV) in Fig. 5.10. The HODD curves exhibit much larger errors when the mesh

cells are optically thick.
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Figure 5.10: Comparison of the performance of the HODD and AHOTN methods of orders one
through three measured in the discrete L2 error norm. The four subplots depict results for the
C1(I)(upper left), C1(II)(upper right), C1(III)(lower left), and C1(IV)(lower right) test cases.
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The reason for HODD’s dramatic failure in optically thick cells can be attributed to the

fixed value of the spatial weight used in the corresponding WDD relationships, i.e. zero and

infinity for even and odd expansion orders, respectively, that are suitable in the thin-cell limit

but are inadequate for optically thick cells. To demonstrate this, let us look at the SN transport

equation in the limit as σt →∞ = c/σs. Recall, the continuous SN equations are give by:

Ω̂n · ∇ψn + σtψn =
σs
4π
φ+

q

4π
. (5.15)

The small parameter ε is defined as ε = 1/σt and the angular and scalar flux are postulated to

be representable as a power series in ε:

ψn =

∞∑
p=0

εpψ[p]
n

φ =

∞∑
p=0

εpφ[p]. (5.16)

Substituting Eq. 5.16 into Eq. 5.15 results in the following expression:

∞∑
p=0

εpΩ̂n · ∇ψ[p]
n +

∞∑
p=0

εp−1ψ[p]
n =

c

4π

∞∑
p=0

εp−1φ[p] +
q

4π
. (5.17)

Separating Eq. 5.17 by powers of ε and looking only at the ε−1 and ε0 terms leads to:

O(ε−1) : ψ[0]
n =

c

4π
φ[0]

O(ε0) : Ω̂n · ∇ψ[0]
n + ψ[1]

n =
c

4π
φ[1] +

q

4π
. (5.18)

From the O(ε−1) term we infer that ψ
[0]
n is isotropic. Applying the quadrature operator

N∑
n=1

wn·

to Eqs. 5.18 and using Eq. 5.17 yields:

φ[0](1− c) = 0

c

4π

[
N∑
n=1

wnΩ̂n · ∇φ[0]

]
+ φ[1](1− c) = q. (5.19)

Let us restrict our attention to two cases: (1) the scattering cross section is constant σs =

const ⇒ c = O(ε), and (2) c = const << 1 (we are outside of the diffusive regime!). In both
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cases 1− c = const >> 0 so we can multiply by C̃ = 1/(1− c):

φ[0] = 0

C̃
c

4π

[
N∑
n=1

wnΩ̂n · ∇φ[0]

]
︸ ︷︷ ︸

=0

+φ[1] = C̃q. (5.20)

Note, C̃ 6= f(ε) for case (2) and lim
ε→0

C̃ = 1 for case (1). Therefore, for both cases (1) and (2),

the scalar flux to leading order in the limit σt →∞ will vary as

φ ∝ 1

σt
. (5.21)

For a discretization method to yield reasonable solutions in the said limit, the same asymp-

totic behavior needs to be reproduced. For HODD, the nodal unknowns within the cells, i.e.

the cell Legendre moments of the angular and scalar flux are collected in vectors ~ψhn and ~φh,

respectively, and analogously to the continuous case, expanded as follows:

~ψhn =

∞∑
p=0

εp ~ψh,[p]n

~φh =

∞∑
p=0

εp~φh,[p], (5.22)

where the vectors are ordered according to
(
~ψhn

)
m

= ψhn,~m and m = mz + 1 + (Λ + 1)my +

(Λ + 1)2mx. Similarly, the face flux moments are collected in vectors and expanded into a

power series in ε:

~ψhn,F =
∞∑
p=0

εp ~ψ
h,[p]
n,F . (5.23)

The face moment vectors are ordered according to:(
~ψhn,E

)
m

= ψhn,E,~mx , m = mz + 1 + (Λ + 1)my(
~ψhn,N

)
m

= ψhn,N,~mx , m = mz + 1 + (Λ + 1)mx(
~ψhn,T

)
m

= ψhn,T,~mx , m = my + 1 + (Λ + 1)mx, (5.24)

with analogous expressions for the W , S, and B faces.

The HODD method consists of two sets of equations: balance equations and WDD equa-
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tions. In this derivation Eqs. 4.29 and 4.30 will be used so that it is slightly more general than

necessary because it includes the AHOTN method as well. Equation 4.29 can be written in

matrix notation as:(
P+x
n
~ψhn,E −P−xn

~ψhn,W

)
+
(
P+y
n
~ψhn,N −P−yn

~ψhn,S

)
+
(
P+z
n
~ψhn,T −P−z‘n

~ψhn,B

)
+ D~ψhn + σt ~ψ

h
n =

c

4π
σt~φ

h +
~q

4π
, (5.25)

where:

P+r
n : (Λ + 1)3 × (Λ + 1)2 matrix containing the term: sµr

|µr|
∆r

P−rn : (Λ + 1)3 × (Λ + 1)2 matrix containing the term: sµr
|µr|
∆r

(−1)mk

D : (Λ + 1)3 × (Λ + 1)3 matrix containing the terms:

− 2sµ
|µn|
∆xi

[mx−1
2 ]∑
l=0

(2mx − 4l − 1)

− 2sη
|ηn|
∆yj

[
my−1

2

]∑
l=0

(2my − 4l − 1)

− 2sξ
|ξn|
∆zk

[mz−1
2 ]∑
l=0

(2mz − 4l − 1) . (5.26)

The weighted Diamond Difference relationships can be written in matrix notation as:

1 + αn,r
2

~ψhn,+r +
1− αn,r

2
~ψhn,−r = Kr

n
~ψhn + αn,rH

r
n
~ψhn, (5.27)

where:

Kr
n : (Λ + 1)3 × (Λ + 1)3 matrix containing the term:

Λ∑
l=0,even

(2l + 1)

Hr
n : (Λ + 1)3 × (Λ + 1)3 matrix containing the term: sµr

Λ∑
l=1,odd

(2l + 1) . (5.28)

Solving Eq. 5.27 for the outflow face moments yields:

~ψhn,+r = −1− αn,r
1 + αn,r

~ψhn,−r +
2

1 + αn,r

(
Kr
n
~ψhn + αn,rH

r
n
~ψhn

)
. (5.29)
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Substituting Eq. 5.29 into Eq. 5.25 and reordering gives:(
D +

∑
r=x,y,z

2

1 + αn,r
P+r
n [Kr

n + αn,rH
r
n]

)
~ψhn + σt ~ψ

h
n =

c

4π
σt~φ

h +
~q

4π

+

(
P−xn +

1− αn,x
1 + αn,x

P+x
n

)
~ψhn,W +

(
P−yn +

1− αn,y
1 + αn,y

P+y
n

)
~ψhn,S +

(
P−zn +

1− αn,z
1 + αn,z

P+z
n

)
~ψhn,B.

(5.30)

Now, the expansion into powers of ε of the volume and face moments, Eqs. 5.22 and 5.23,

respectively, are substituted into Eq. 5.30, and the resulting expression is separated by powers

of ε. Note that for both AHOTN and HODD, αn,r is asymptotically constant, i.e. in the limit

ε→ 0 it does not depend on σt. The O
(
ε−1
)

is given by:

~ψh,[0]
n =

c

4π
~φh,[0]. (5.31)

From Eq. 5.31 we can infer that the leading order solution is isotropic. Applying the quadrature

operator to Eq. 5.31 we get:
~φh,[0](1− c) = 0. (5.32)

As discussed, for the cases of interest in this study (1− c) > 0 and therefore we conclude:

~φh,[0] = 0

~ψh,[0]
n = 0. (5.33)

Substituting the power expansions Eqs. 5.22 and 5.23 into Eq. 5.29 and retrieving the O(1)

term yields:

~ψ
h,[0]
n,+r = −1− αn,r

1 + αn,r
~ψ
h,[0]
n,−r +

��
���

���
���

���
���

�:0

2

1 + αn,r

(
Kr
n
~ψh,[0]
n + αn,rH

r
n
~ψh,[0]
n

)
. (5.34)

The O(1) term in the expansion of the outflow moments Eq. 5.23 is only zero in case lim
σt→∞

αn,r =

1 which is satisfied by the AHOTN weights but not by the HODD weights. For HODD, the

O(1) outflow moments are given by a constant times the inflow moments and therefore do not

follow a 1/σt trend. This finding disqualifies the HODD method for application on optically

thick meshes and explains the large errors of the HODD method for the optically thick test

cases C1(III) and C1(IV) in Fig. 5.10.

Due to the described deficiencies of the HODD method, it will be discarded from the com-

parison from this point onwards: HODD performs very similar to AHOTN on fine meshes but

is not suited for coarse meshes where its inherent, detrimental flaws lead to poor performance.
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5.1.7 Influence of the Quadrature Rule on Accuracy and Efficiency
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Figure 5.11: Discrete L2 error versus execution time for the LD, DGLA-1, and AHOTN-1
method for the C1(I) test case. The left subplot contains S4 level symmetric results while the
right subplot contains results obtained with the S8 level symmetric quadrature.

Within this section, most discussed results are obtained using the S4 level symmetric quadra-

ture. All discussed errors are associated with the spatial discretization method only and do not

comprise any angular discretization component. This is achieved by designing the MMS test

suite for the SN equations, i.e. incorporating a particular angular quadrature from the start.

This subsection will demonstrate that changing the angular quadrature indeed does not change

the general conclusions of this section. Therefore, one could swap another level-symmetric

quadrature (or even another quadrature type) for the utilized S4 quadrature and the results

discussed within this section would still hold.

In Fig. 5.11 the errors obtained with the LD, DGLA-1 and AHOTN-1 methods for the C1(I)

test and S4 (left subplot) and S8 (right subplot) level symmetric quadrature are plotted versus

the methods’ execution time. The curves in the left and right subplot are strikingly similar

supporting the expected independence of the angular quadrature on the results discussed within

this section.

133



www.manaraa.com

5.1.8 Influence of the Scattering Ratio on Accuracy and Efficiency
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Figure 5.12: Discrete L2 error versus execution time for the LD, DGLA-1, and AHOTN-1
methods for the C1(I) (left subplot) and C1(V) (right subplot) test case.

In Fig. 5.12 a comparison of the performance of LD, DGLA-1 and AHOTN-1 is presented

for test cases C1(I) and C1(V), where the only difference between these two test cases is the

scattering ratio of c = 0.2 and c = 0.8. The obtained error versus execution time curves are

almost identical, indicating a negligible influence of the scattering ratio on the outcome of this

study. This is partially attributed to the way in which the MMS problem is constructed. The

scattering ratio enters only in the computation of the source and not in the flux shape. This is

a shortcoming of the test problem because in general transport problems the scattering ratio

influences the flux shape significantly, for example in problems in the diffusion limit.

5.1.9 Methods’ Performance for C1 Smoothness

A comparative study of the set of methods for the C1(I) test case is presented in Figs. 5.13

through 5.17 for the discrete L1, L2 and L∞ norms, the integral error norm, and the continuous

L2 error norm, respectively.

The discrete L1 error results in Fig. 5.13 are very similar to the L2 norm results in Fig.

5.14. This behavior is not only observed for the C1(I) test case but throughout the whole
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Figure 5.13: Discrete L1 error versus execution time for various spatial discretization methods
for orders for the C1(I) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.
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Figure 5.14: Discrete L2 error versus execution time for various spatial discretization methods
for orders for the C1(I) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.
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Figure 5.15: Discrete L∞ error versus execution time for various spatial discretization methods
for orders for the C1(I) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.
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Figure 5.16: Integral error norm (computed for the left lower eighth subcube) versus execution
time for various spatial discretization methods and orders for the C1(I) test case. The shaded
area is identical in both plots to facilitate comparison between the two plots.
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Figure 5.17: Continuous L2 error versus execution time for various spatial discretization meth-
ods for orders for the C1(I) test cases.
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parameter space study. Therefore, the L1 error norm will not be discussed in the remainder of

this work and attention will be focused on the performance of the methods measured in the L2

error norm.

For the performance in the discrete L2 and L∞ norms, the general rule holds that higher-

order methods are more efficient. The gray shaded areas on the left and right in both Fig. 5.14

and 5.15 cover identical areas in their respective figures to facilitate comparison between the

two subplots. Clearly, the higher-order versions of the discretization methods on the right-hand

side are more efficient than the methods of order zero or one. In particular, the relatively

cheap but inaccurate Simple-Corner balance method (SCB) performs worst, and the cheapest

Diamond Difference method is the second least efficient method. Generally, more expensive,

but accurate methods offer an advantage over cheaper methods. The particular problem with

the SCB method is that accuracy is sacrificed for robustness in the thick diffusion limit: it is

comparable in execution time to DGLA-1 on the same mesh but much less accurate. Throughout

the whole parameter study the SCB method is found to be the worst performing method in the

range of parameter space considered.

The most efficient methods are the the DGLA-3 and the AHOTN-3 methods, which perform

(almost) identically well, followed at some distance by the DGC-3 methods. Reducing the order

to two, we find that the AHOTN-2 method performs just slightly worse than the DGC-3 method,

followed at some distance by the DGLA-2 and then the DGC-2 method. Comparing the two

DGFEM families, LD performs better than DGLA-1, while the performance is similar for DGC-

2 and DGLA-2 and finally for order three DGLA outperforms DGC. With increasing expansion

order, DGLA’s efficiency increases in comparison with the competing methods, in particular

the DGC method and AHOTN, its main competitor for the best performing method. It should

be pointed out here that the LD method’s grind time is significantly shorter than DGLA grind

time because of the streamlined kernel implementation.

Among the first order methods, the LL and LN methods are the best performers, while

SCB, Diamond Difference, and DGLA-1 perform worst (in improving performance order). The

reason for DGLA-1 to perform worse than one would expect is because it is one of the first

order methods (besides AHOTN-1 and SCB) that uses a Lapack routine within each kernel

solution, thus reducing the efficiency. In contrast to AHOTN-1, its accuracy is not offsetting

its longer execution time. The LL and LN methods are comparatively efficient because their

kernels are optimized while the obtained solutions are reasonably accurate on a given mesh.

The picture changes somewhat when looking at the integral error norm presented in Fig.

5.16. The higher-order methods’ error versus execution time curves are clustered within a tight

band with only minor differences occurring between the AHOTN, DGLA, and DGC methods

of order two and three. Among the zero and first order methods are some that outperform the

higher-order methods: the AHOTN-1 is slightly better than the higher-order methods, while
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LL and LN significantly surpass the higher-order methods’ efficiency. Even though it is not a

general rule that the lower-order methods beat the higher-order methods when using integral

error norms, it is noteworthy that the conclusions at least partially change with respect to Lp

error norms in that the LL and LN appear as the most promising methods in the said case.

In order to elaborate on this shift of results, consider the ratio of the FOM Eq. 5.5 for a

high and a low-order method:

d =

(
Cε∆t

λ/3
g

)
H(

Cε∆t
λ/3
g

)
L

. (5.35)

If d > 1 the lower-order method is more efficient, while for d < 1 the high-order method is more

efficient. Reordering terms gives:

d =
CHε
CLε

(
∆tHg
∆tLg

)λ/3
= dεd

λ/3
t . (5.36)

Typically, dε < 1 and dt > 1 such that a balance must be struck between grind time and accuracy

to achieve an efficient method. However, for increasing λ the influence of the execution time

becomes more prominent, i.e. cheaper but less accurate methods gain an advantage over more

expensive, but accurate methods. Two comments are in order here:

• That higher-order methods are less efficient when the permissible order λ is larger, seems

counter-intuitive . However, it is a consequence of the fact that the order of convergence

is identical for all methods of any order, and is stipulated by solution smoothness and

error norm. In other branches of computational physics high-order methods are known

to significantly outperform low-order methods when their potentially higher accuracy

order can be utilized, but this advantage does not carry over to SN problems due to the

inherently low smoothness of the underlying exact solution.

• Even though the described comparison involves a high and a low-order method, it is in

fact more general in that high-order method could be a more accurate and expensive

method of the same order, e.g. we could compare LD and AHOTN-1 and would conclude

that with larger λ, for example permissible by a different norm or solution smoothness,

LD would gain an advantage.

Again, the underlying condition that the preceding discussion is valid, and in addition that the

FOM for SN methods, Eq. 5.6, makes sense is that λ is the same for all participating methods.

If the underlying solution is smooth, the λ depends on the utilized methods’ expansion orders

and none of the stated results applies.
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Finally, the continuous L2 error norms plotted in Fig. 5.17 are distinguished from the dis-

crete and integral error norms by several facts. First, the error versus execution time curves

form straight lines in the log-log plots indicating that the asymptotic regime is reached imme-

diately for the considered cell sizes. Second, the methods’ curves are contained within a tight

band, indicating that the methods’ efficiencies when measured in the continuous L2 norm are

very similar and no method has a significant advantage over the others.

It should be pointed out that not all methods’ continuous L2 error norm was computed

because the procedure by which it is computed requires the knowledge of the underlying finite

element function space. The solution for a single mesh cell, encoded either in the expansion

coefficients for DGLA and DGC or in the spatial Legendre polynomials moments for AHOTN,

is used to reconstruct the flux shape within the said cell, and the continuous L2 error norm

can be accumulated using a quadrature rule. For some methods, for example the LL and LN

methods, no such procedure was implemented and therefore the respective results are missing.

Even though the methods’ performance in the continuous L2 error norm do not exhibit a

large spread, the DGC methods of orders two and three still are a bit more efficient than the

remaining methods. The DGLA and AHOTN methods feature a similar efficiency across all

orders, while the LD method is least efficient. It should be stressed that here too high-order

methods (even though DGC instead of DGLA and AHOTN in this particular case) are most

efficient, consistent with the results when measuring error in the discrete L2 and L∞ norm,

Figs. 5.14 and 5.15, respectively.

However, among the higher-order methods, the DGC method is special in that it does

not retain all flux moments but only those whose sum of all moment indices is less than the

prescribed order. For Λ = 3 this would translates into 64 volume flux moments for DGLA

versus 20 flux moments for DGC. The high-order flux moments are typically small compared to

the low-order flux moments such that they constitute small corrections to an otherwise decent

flux shape.

However, the higher the order of the flux moment, which shall be denoted by m̃ = mx +

my + mz, the harder it is to achieve its iterative convergence. For flux moments with m̃ > 2,

convergence would almost certainly stall at some ε >> εmach. Therefore, due to contamination

with iterative convergence error, higher-order moments may not have the corrective effect on

the flux shape that they would have otherwise. Note that given a fixed mesh size, DGLA is

more accurate than DGC but it is not accurate enough to offset the additional cost of executing

its kernel operation.

To summarize the results inferred from the C1(I) test case regarding the accuracy and

efficiency of the competing discretization methods:

• For error norms that permit only a small order of convergence, higher-order methods such

as AHOTN-3, DGLA-3, or DGC-3 are most efficient.
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• For the integral error norms, first order methods such as LN and LL outperform the

higher-order methods.

• For orders Λ > 1, the DGLA family outperforms the DGC family for the discrete L2 and

L∞ norms, both families perform about equally well for the integral error norms, and

DGC outperforms DGLA when measuring error in the continuous L2 error norm.

• The worst-performing method is the SCB method, which suffers from a relatively expen-

sive grind time and inadequate accuracy. By design, it sacrifices accuracy for robustness

in the thick diffusion limit, not tested in the MMS but separately in section 5.3, which

explains its poor performance for this test problem.

Variation of the Domain Optical Thickness

In Figs. 5.18, 5.19, and 5.20 discrete L2 error norms are plotted versus execution time corre-

sponding to test problems C1(II), C1(III), and C1(IV) with successively larger domain optical

thickness. Test cases II-IV all feature a total cross section of σt = 2 and physical domain

thicknesses of 4, 10, and 20 cm, respectively. As the solution of these problems is performed

on meshes that are not in the asymptotic regime, asymptotic behavior, i.e. straight lines in the

error versus execution time plots cannot be expected.

L2 error norm results:

With respect to the base case, the C1(I) problem depicted in Fig. 5.14, several trends can

be inferred from the set of optically thick problems. The general conclusion that higher-order

methods perform better than low-order methods (Λ = 1) remains only partially valid for test

cases II-IV. While the AHOTN method of orders two and three still perform better than any

of the lower-order methods, the same is not true for the DGLA and DGC methods of order two

and three. The LL, LN, and AHOTN-1 methods are more efficient for short execution times,

in particular for test cases C1(III) and C1(IV), and execution times ∆t < 10 seconds.

Among the first order methods a clear separation emerges when increasing the domain

optical thickness. On the one hand, the TMB methods: LL, LN, and AHOTN-1, and on the

other hand, the remaining methods. The former’s advantage in performance becomes more

prominent as the optical thickness is increased. On the other end of the performance spectrum

are the SCB and Diamond Difference methods. As already pointed out, SCB is not intended to

be very accurate for the low scattering ratio cases considered here, and DD’s properties make

it unsuitable for solving problems on coarse meshes.
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Figure 5.18: Discrete L2 error versus execution time for various spatial discretization methods
and orders for the C1(II) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.

Among the higher-order methods, the AHOTN method emerges as the most efficient method:

While the advantage for longer execution times (corresponding to finer meshes) is not as pro-

nounced as for short execution times, it still beats both the DGC and DGLA methods of orders

two and three. In contrast to the C1(I) test case, where AHOTN-3 had to share its top position

with DGLA-3 for most efficient method, for test problems II-IV AHOTN-3’s closest contestant

is AHOTN-2.

The two DGFEM families exhibit errors that are much larger (up to 10 times) than AHOTN-

2,3 for execution times less than 10 seconds, while the differences diminish as execution times

increase, i.e. the mesh is refined. It has been found in [53] that AHOTN is more accurate

than DGLA given the same mesh spacing. The findings presented here demonstrate that under

certain conditions it is also more efficient.

Comparing the DGLA with the DGC methods’ results unveils the unexpected finding that

DGC-2,3, particularly for test cases III and IV in Figs. 5.19 and 5.20, respectively, performs

better than DGLA-2,3 for coarse meshes. For the C1(II) test problem this trend is also visible,

but it is more pronounced in cases III and IV. With mesh refinement, DGLA catches up and

eventually becomes more efficient than DGC. It should be mentioned that LD outperforms

DGLA-1 in all presented test problems mainly because of its streamlined implementation.
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Figure 5.19: Discrete L2 error versus execution time for various spatial discretization methods
and orders for the C1(III) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.
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Figure 5.20: Discrete L2 error versus execution time for various spatial discretization methods
and orders for the C1(IV) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.
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In contrast to the C1(I) test case, Fig. 5.14, where the three best performing methods all

feature Λ = 3 in the order AHOTN, DGLA, DGC followed by the Λ = 2 methods in exactly

the same order, the results for optically thick domains tend to be grouped by method. Best

performance AHOTN-3 followed by AHOTN-2, followed by the first order TMB methods and

finally the DGC methods of orders two and three followed by the DGLA method of orders two

and three. It appears that the discretization method rather than the expansion order plays

the decisive role when solutions on coarse meshes are desired. However, fixing the method, a

higher-order still trumps lower-order methods.

With increasing the domain optical thickness starting from Fig. 5.18 to 5.20, several of the

methods develop maxima in the error versus execution time curves that move from the right

edge of the figures (coarse meshes) towards the middle (finer) meshes as the domain optical

thickness is increased. This phenomenon is particularly pronounced for first order methods but

higher-order methods show onsets of this behavior as well for test case C1(IV) in Fig. 5.20.

The reason for the maximas’ occurrence is cancellation of errors, but not in the random,

volatile process described before that is enhanced by non-smooth solutions and oscillations of

the solution in their vicinity. The angular flux in the MMS test problem is either monotonically

decreasing equivalent to e−x, or monotonically increasing equivalent to 1 − e−x. The greater

the total cross section, the faster either case approaches its saturation value (0 and 1 in the

example). Therefore, the larger the total cross section and the physical domain thickness

are, the larger the volume fraction in which the angular flux is essentially flat; see Fig. 5.21.

Any discretization method will obtain the exact solution for cases where the exact solution is

essentially flat.

A necessary condition for the occurrence of broad maxima is an error norm that allows

cancellation of error like the discrete L2 error norm. The process that causes the particular shape

of the error curves is illustrated in Fig. 5.21: The angular flux equivalent to ψ = 2(1− e−σtx)

is plotted for three different cases. In the first case either the mesh size h is very large with

respect to the physical domain thickness or the total cross section is very large. Therefore the

flux assumes 99% of its asymptotic value within the first mesh cell and the majority of the

volume is occupied by a flat flux region.

The distance at which the flux assumes 99 % of its asymptotic value is denoted by t and

the ratio γ = t/h is a measure of the regime that the solution is in.

Case: γ << 1: Most mesh cells are fully within the flat flux region, but the boundary cells

feature a small volume fraction characterized by a step gradient. Any discretization method

of any value will obtain an accurate solution for cells fully in the flat flux region, regardless in

which norm the error is measured. However, the shape of the solution in the boundary cells is

hard to approximate; certainly, if the error is measured in a pointwise norm as for example the
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continuous L2 norm, the error would be large. However, the discrete L2 norm uses only the

average values. Because of the small volume fraction of the steep region, it does not significantly

influence the average value within the cell.

To demonstrate this, consider the average over the mesh cell:

ψ̄ =
1

h

∫ h

0
dx2

(
1− e−σtx

)
=

2

h

(
h+

[
1

σt
e−σtx

]h
0

)
= 2 +

2

hσt

[
e−σth − 1

]
. (5.37)

Thus for σt → ∞ ⇒ ψ̄ → 2 and therefore the steep region does not influence the cell-average.

Numerical methods will yield inadequate resolution for the steep region, but the error will

cancel over the much larger flat-flux sub-volume of the cell. Therefore, for γ << 1, numerical

methods may obtain cell-wise errors that tend to zero on coarse meshes([44]).

Case: γ ≈ 1: When the mesh size h is comparable to t then the slope and curvature within

the boundary cell are hard to approximate using a numerical method. Furthermore, the com-

puted average within the cell is not easy to infer as in the case γ << 1, i.e. you need to get

slope and curvature right to obtain a reasonable approximation of the average. Therefore, the

computed average flux will feature a large error. The γ ≈ 1 range corresponds to the broad

maximum in the error versus execution time/mesh refinement curves.

Case: γ >> 1: The exact angular flux looks almost linear on the fine mesh, i.e. slope and

curvature are well resolved and can be well approximated by the numerical method. The case

γ >> 1 corresponds to a data point close to or within the asymptotic regime.

Going through the cases γ << 1, γ ≈ 1 and γ >> 1 the solutions first start with a small

error, then the error increases until it reaches its peak at γ ≈ 1, and finally decreases as the

slope and curvature of the exact solution is well approximated.

Within the preceding discussion the necessary condition for the occurrence of the maxima

in the error versus execution time curves was an error norm that allows smearing of results

over the extent of one mesh cell. The discrete L2 norm allows that because it only takes into

account averages which are computed before absolute values are applied. As a corollary the

said phenomenon must vanish if an error norm is used that does not allow cancellation of

error/smearing over the extent of a mesh cell. In Fig. 5.22 continuous and discrete L2 error

norms are plotted versus DGLA-1’s execution time for test problems C1(I) to C1(IV). Maxima

in these curves occur for the discrete L2 norm results but not for the continuous L2 norm which

is consistent with the explanation given above.
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Figure 5.21: Illustration of the process that leads to broad maxima in the error versus execution
time/mesh spacing curves. Cases γ << 1, γ ≈ 1 and γ >> 1 are snapshots of scenarios
corresponding to an under-resolved solution with small error, poorly resolved solution with large
discretization error (maximum of error) and well resolved solution with small error, respectively.

Integral error norm results:

For the C1(I) test case, the main conclusion for errors measured in the integral error norm

was that first order TMB methods: LL, LN and AHOTN-1 are the best performers with LN

outperforming any other method. In Figs. 5.23 to 5.25, results are presented for test problems

C1(II)-C1(IV), respectively, with the discretization error measured in the integral error norm.

The general findings from the C1(I) test case do not change when the optical domain thick-

ness is increased. The LN method still emerges as the most efficient method followed by the LL

method. The higher-order methods are less efficient than LL and LN, but more efficient than

the remainder of the first order methods.
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Figure 5.22: Discrete and Continuous L2 error norm results for test cases C1(I) through C1(IV)
obtained using the DGLA-1 method.

It is noteworthy that among the high-order methods, things change significantly when in-

creasing the domain optical thickness. For test case C1(I), Fig. 5.16 , AHOTN-2,3, DGLA-2,3

and DGC-2,3’s error curves were confined to a tight band, while for cases C1(II) to C1(IV),

deviation among the high-order methods is observed. For case C1(II), Fig. 5.23, the DGC

methods perform best followed by the DGLA and finally AHOTN. The described best-to-worst

performer order changes for the C1(III) and C1(IV) test cases to DGC/AHOTN/DGLA and

AHOTN/DGC/DGLA, respectively, i.e. the AHOTN method improves in its rank as the do-

main optical thickness is increased. This is consistent with the observation that TMB methods

perform better than straight polynomial DGFEM methods on coarse meshes.

Some of the curves in Figs. 5.23 to 5.25 exhibit a peculiar L shape, initial steep slopes that

quickly change to a smaller slopes. We shall elaborate on the reason for this particular shape.

As an example we use the DGC-2 results from test case C1(II). We suppose that the error is

made up of two components in the following fashion:

‖ε‖2 = C1T
λ1 + C2T

λ2 , (5.38)
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Figure 5.23: Integral error norm versus execution time for various spatial discretization methods
and orders for the C1(II) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.

where T is the execution time and λ1, λ2, C1, and C2 are constants. Without loss of generality

we assume |λ1| > |λ2| such that in the limit T → 0 the first term will dominate and in the limit

T →∞ the second term will dominate.

This will now be demonstrated based on the DGC-2 results obtained for the C1(II) test

case. Indexing the times and errors from lowest to highest execution time and denoting them

by: tj and ‖ε‖(j)2 the coefficients in Eq. 5.38 are computed using the expressions in Table

5.4. The computed values are used for plotting Eq. 5.38 together with the DGC-2 data in

Fig. 5.26. The model reproduces the observed L shape very well and therefore we conclude

that the described peculiar shape is caused by an error that is composed of two parts, one

that dominates for short execution times/coarse meshes and another that dominates for longer

execution times/finer meshes.

In summary the following findings are most important within this subsection:

• Discrete L2 error: When increasing the domain optical thickness the TMB methods are

more efficient when compared to the other methods. However, higher-order DGFEM

methods, by and large, outperform low-order TMB methods: LL, LN, and AHOTN-1.

• Discrete L2 error: The most efficient method for optically thick test cases is the AHOTN-3

method.
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Figure 5.24: Integral error norm versus execution time for various spatial discretization methods
and orders for the C1(III) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.

• Integral error: LN followed by LL remain the most efficient methods.

• The discrete L2 error norm allows for broad maxima in the error versus execution time

curves. These maxima are related to a thin boundary layer featuring large variation in

the angular flux and large flat-flux regions in the domain’s interior. Continuous norms

that do not allow cancellation of error do not exhibit maxima in the error vs. execution

time curves.

Variation of Aspect Ratio

Within this subsection, the domain aspect ratio is varied starting from X = Y = Z = 1 (C1(I))

to X = 1.4, Y = 1.0, Z = 0.8 (C1(VI)) and finally X = 2.0, Y = 0.2, Z = 0.2 (Table 5.1).

The domain aspect ratio translates directly into the cells’ aspect ratio because a uniform mesh

with an identical number of intervals per dimension is used. The total cross section and optical

thickness remain constant at σt = 1 and c = 0.2. The results for the C1(VI) and C1(VII) test

case measured in the discrete L2 error norms are plotted in Figs. 5.27 and 5.28.

The curves obtained for the C1(VI) test case are very similar to their C1(I) counterparts

depicted in Fig. 5.14 because the aspect ratio of each cell has not change significantly. However,

it is important to observe that going to a non-unity aspect ratio does not significantly alter
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Figure 5.25: Integral error versus execution time for various spatial discretization methods
and orders for the C1(IV) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.

the best-to-worst-performer ordering of the methods, i.e. for example one method is much

better at unity aspect ratio than another method. For the lower-order methods, the results are

virtually identical, but for the higher-order methods slight changes in ordering are observed. In

particular, the DGC-3 methods moves very close to the AHOTN-3 and DGLA-3 curves such

that these three methods perform virtually equally well.

When moving to test case C1(VII) more significant changes in the efficiency ranking of the

methods occur. First, among the low-order methods the LD method’s performance beats the

AHOTN-1 method by a significant margin while both methods performed about equally well

for the C1(I) test case. For higher expansion orders, the AHOTN-2,3 methods lose ground

and are clearly outperformed by both DGFEM families. Particularly interesting, however, is

that the DGC family now has an edge over the DGLA family: DGC-3 outperforms DGLA-3

slightly and DGC-2 outperforms DGLA-2 significantly. For the same mesh DGLA is still more

accurate, but its advantage in accuracy cannot offset its longer execution time.

AHOTN and DGLA are at a disadvantage compared to DGC because payoff from retaining

all mixed order flux moments (or expansion terms) decreases when the cell aspect ratio is highly

skewed. In order to demonstrate the reduction of importance of higher-order flux moments, a

cell-wise measure of importance of higher-order moments κ of how much the additional DGLA
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Table 5.4: Computation of coefficients in Eq. 5.38 and the resulting values using DGC-2 data.

λ C

Set 1 λ1 =
log
‖ε‖(3)

2

‖ε‖(2)
2

log
t3
t2

= −2.15 C1 =
‖ε‖(3)

2
t3

=1.6-5

Set 2 λ2 =
log
‖ε‖(7)

2

‖ε‖(6)
2

log
t7
t6

= −0.72 C2 =
‖ε‖(7)

2
t7

=1.2-6

expansion terms change the solution is defined:

κ =

∫
Q~i
dV (pΛ − p′Λ)2∫

Q~i
dV p2

Λ

, (5.39)

where pΛ is the reconstructed angular flux within a single cell obtained with DGLA-Λ, and

p′Λ is the corresponding flux shape obtained with DGC. Using orthogonality of the Legendre

polynomial basis functions, κ can be expressed as:

κ =

∑
mx+my+mz>Λ

ψh,
~i

~m
2~m+1∑

~m≤Λ

ψh,
~i

~m
2~m+1

. (5.40)

In order to test the conjecture, DGLA-1,2,3 equations are solved for a single cell with

uniform unit inflow on all inflow boundary conditions and no distributed source. The aspect

ratio δ is varied, and the physical cell thickness is computed as:

∆xi = δ−1/3

∆yj = δ−1/3

∆zk = δ2/3. (5.41)

These physical domain thicknesses ensure that the volume is always unity.

The importance of higher-order moments κ is plotted versus δ for Λ = 1, 2, 3 in Fig. 5.29.

With decreasing optical aspect ratio, κ quickly drops according to a power law:

κ = Cδp, p ≈ 3, (5.42)
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Figure 5.26: Comparison of the model Eq. 5.38 and the DGC-2 error versus execution time
curve for test case C1(II).

where C is some constant. The provided evidence supports the conjecture that for skewed

aspect ratios, mixed flux moments carry less importance than for optical aspect ratios close to

unity.

Summary of C1 Results

In summary, the decision of which discretization method is the most efficient for C1 problems

depends on the error norm used. When using a discrete Lp error norm, higher-order methods

beat lower-order methods with AHOTN-3 and DGLA-3 typically leading the field. However,

LN or LL should be favored when integral quantities are desired. Some methods are never

competitive such as the SCB and DD methods. The former finding is not surprising because

SCB is designed to be robust in the thick diffusive limit which is achieved by sacrificing accuracy

in non-diffusive regimes. Diamond Difference features the shortest grind time, but it’s not

accurate enough even on optically resolved meshes. For optically thick problems TMB methods

comparatively perform better than the remaining straight polynomial methods. In contrast,

when cells feature skewed aspect ratios DGC’s performance improves drastically and should be
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Figure 5.27: Discrete L2 error norm versus execution time for various spatial discretization
methods and orders for the C1(VI) test case. The shaded area is identical in both plots to
facilitate comparison between the two plots.

the method of choice.

5.1.10 Methods’ Performance for C0 Smoothness

Problems with discontinuous solutions referred to in this work as C0 problems are very difficult

to solve with standard numerical methods. Oscillations of the solution in the vicinity of the

discontinuities leads to spurious pre-asymptotic behavior, very low observed convergence rates

with mesh refinement and lack of cell-wise convergence prohibit obtaining high-fidelity solutions

on any reasonable uniform mesh. Approaches to circumvent this problem can be found in

Refs. [1] and [64]. Both references capitalize on adaptive mesh refinement to target cells

featuring large errors, which are typically regions of low smoothness, to isolate them from

the remainder of the mesh cells. Thus, resources are efficiently used to contain the influence

of non-smoothness. Further [1] introduces the Singular-Characteristic Tracking algorithm for

two-dimensional Cartesian meshes. This algorithm was extended to three-dimensional Cartesian

meshes within this work forming the SCT-Step method.
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Figure 5.28: Discrete L2 error norm versus execution time for various spatial discretization
methods and orders for the C1(VII) test case. The shaded area is identical in both plots to
facilitate comparison between the two plots.

Discrete L∞ error norm:

First, if the error is measured in the discrete L∞ norm, then regular methods are non-convergent.

The error increases with mesh refinement because the average flux of cells intersected by the

SC/SPs does not converge to the true value. Therefore, the only resort currently available is to

use the SCT algorithm. Cell-wise convergence may be an essential requirement in large-scale

shielding problems where cells are physically large1 and therefore many cells are intersected by

the SC/SPs. It is essential to limit the error on the computed average flux within these cells,

but further mesh refinement may be infeasible leading to a computation whose fidelity is not

sufficient to enable decision-making on it.

Discrete L2 error norm results:

If the error is measured in the discrete L2 norm, as depicted in Figs. 5.30 to 5.32 for the

C0(I), C0(II) and C0(VII) test problems, solutions on coarse meshes are unreliable in their be-

havior with mesh refinement. The error may initially be large or small and subsequently may

1Cells representing air can be optically thin even though their physical dimensions are large due to the small
density of air.
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Figure 5.29: Plot of the importance of mixed flux expansion terms κ versus aspect ratio pa-
rameter δ for expansion orders Λ = 1, 2, 3.

increase or decrease with mesh refinement. Therefore, the results within this regime are not

trustworthy. A sufficient number of mesh refinement steps is necessary to get into a regime

where the error is decreasing monotonically albeit at a very small rate. Execution times corre-

sponding to sufficient mesh refinement to obtain (for the most part) a monotonically decreasing

error trend are indicated by a red line in plots 5.30 to 5.32. The necessary execution times

range from two up to 200 seconds for most of the cases. For the high-order methods in test case

C0(II), the regime in which a decreasing error is observed is not reached within the admissible

number of mesh refinement steps.

For all test problems with the exception of C0(I) and high-order methods the SCT-Step

method surpasses the ordinary discretization schemes’ efficiency before reaching the red line.

Therefore, the SCT-Step method is the most efficient discretization method when the error is

measured in the discrete L2 error norm. It should be pointed out that the SCT-Step method is

far from an efficient method in itself because it utilizes the step discretization, which is grossly

inaccurate due to its first order accuracy2.

2In fact, the reason why it is so inaccurate is the inability to capture any slope in its solution. Linear methods
perfectly reproduce large gradients as long as the curvature of the underlying solution is small.
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Figure 5.30: Discrete L2 error norm versus execution time for various spatial discretization
methods and orders for the C0(I) test case. Red line indicates necessary level of mesh refinement
(translated into execution time) from where on standard methods’ results are trustworthy.
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Figure 5.31: Discrete L2 error norm versus execution time for various spatial discretization
methods and orders for the C0(II) test case. Red line indicates necessary level of mesh refinement
(translated into execution time) from where on standard methods’ results are trustworthy.
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Figure 5.32: Discrete L2 error norm versus execution time for various spatial discretization
methods and orders for the C1(VII) test case. Red line indicates necessary level of mesh refine-
ment (translated into execution time) from where on standard methods’ results are trustworthy.

The obvious deficiency of standard methods for the solution of C0 problems logically leads to

the creation of the SCT-Step method. However, its inherent deficiency is the poor quality of the

utilized step method. Only because of this deficiency are the standard methods even competitive

with the SCT-Step method. Combining a higher-order method with the SCT algorithm would

combine the advantages of the SCT algorithm with a high quality discretization method. In

addition, a high-order SCT method would have the potential to allow for spectral convergence,

i.e. it restores the method’s inherent convergence order.

It must be stressed here that the SCT method does not change the mesh and does not require

a different mesh for each angular direction, but operates locally on the mesh cell of interest,

separates it into the illumination segments, solves the pertinent equations on the subvolumes,

and collapses them before finishing the solution in the said cell.

An algorithm for a higher-order SCT scheme should contain the following ingredients:

• An unstructured grid solver, e.g. DGFEM on tetrahedrons or for general polyhedra.

• A subroutine that divides the more complicated polyhedra illuminated by one boundary

face into simple bodies like tetrahedra.

• A prolongation operator that computes the subcell (tetrahedra) source moments given
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cell-wise source expansion without loss of accuracy order.

• A restriction operator that computes the cell-wide angular flux moment from the subcell

solutions without loss of accuracy order.

Integral error norm results:

Integral error norm results are presented for the C0(I) test problem in Fig. 5.33. These results

are presented here as an example to demonstrate that integral error norm results for the C0 test

problems are remarkably similar to their C1 counterparts. Therefore, the conclusions drawn

earlier in the corresponding C1 section carry over to the C0 problems.

10-3 10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

In
te

gr
al

 E
rr

or

DD
LL
LN
LD
AHOTN-1
SCB
DGLA-1

10-3 10-2 10-1 100 101 102 103 104 105

Execution Time (sec.)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

In
te

gr
al

 E
rr

or

AHOTN-2
AHOTN-3
DGLA-2
DGLA-3
DGC-2
DGC-3

Figure 5.33: Integral error norm versus execution time for various spatial discretization methods
and orders for the C0(I) test case. The shaded area is identical in both plots to facilitate
comparison between the two plots.

Summary of C0 Results

With the exception of the integral error norm, C0 results differ significantly from C1 results.

Cell-wise convergence (L∞ norm) is attained only when using the SCT-Step method. For the

discrete L2 error norm, sufficient mesh refinement is necessary to obtain trustworthy results;

however, for the presented test cases the SCT-Step method has already surpassed the efficiency
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of the standard method at this point: the SCT-Step curve is below the other method’s curve

(smaller error for the same execution time). Within the set of considered methods, the SCT-

Step method is the most suitable one for C0 problems when cell-wise solutions are desired.

However, its inherent flaw, the poorly performing step approximation, could be amended by

combining the SCT with a higher-order method. Integral error norm performances do not differ

from the C1 test cases and therefore the same conclusions hold.

5.1.11 Summary of MMS Test Suite Results

Deciding which method is the most efficient for solving a given problem depends on the choice

of the error norm and the smoothness of the exact solution. When accuracy is desired in

the discrete Lp norms and the solution is at least C1, then higher-order methods outperform

low-order methods. For optically thick domains featuring moderate aspect ratios AHOTN-3

is the best performer, while for skewed aspect ratios the DGC-3 method emerges as the most

efficient method. If the solution does not feature a differentiable flux (C0) then the SCT-Step

method is the best performer among the set of considered methods; in the author’s opinion

using the SCT algorithm in conjunction with a high-order method would create a superior

method. Finally, if the error is measured in the integral error norm, the LL and LN methods

are the best performers. By using the FOM defined in 5.5 we rationalized this behavior that is

caused by a larger rate of convergence that is, however, identical for all methods.
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5.2 Positivity: Lathrop’s Test Problem

Negative fluxes are an undesirable feature of radiation transport solutions because they can

inhibit convergence, pose problems for multiphysics coupling, and undermine user’s confidence

in the solution’s validity. Negative solutions can occur for angular face fluxes, angular volume

fluxes, scalar face fluxes, and scalar volume fluxes. In addition, by negative flux we mean that

the average flux over a cell’s volume or face is negative, or that the flux shape somewhere on

the face or within the volume is negative.

Angular face fluxes are most prone to becoming negative in the sense that a cell whose source

and inflow face fluxes are non-negative cannot have negative volume fluxes unless at least one

outflow face flux is negative. Further, angular volume fluxes are more prone to becoming

negative than scalar fluxes because at least one angular flux must be negative for the scalar flux

to be negative. However, the scalar flux can still be positive even if the angular flux is not for

all discrete ordinates. Within this work, we will concentrate on angular face fluxes and scalar

volume fluxes. Angular face fluxes are the most sensitive indicator that the flux is not strictly

positive, while volumetric scalar fluxes are used to compute reaction rates and are therefore

an important quantities to be considered as the ultimate reason for performing a transport

calculation, e.g. when multiphysics coupling of the radiation transport solver is desired.

The average flux is less prone to becoming negative than the flux shape that is perfectly

acceptable to be negative. A negative flux shape will only cause a negative average flux if the

negative contributions are not offset by positive contributions on a face or within a volume.

Within this work, only average fluxes are considered for two reasons:

1. Flux shapes are hard to reconstruct and examine for general methods because the correct

function space that ought to be used for the flux reconstruction is unknown for some

methods.

2. For practical purposes, the flux average is the most important quantity and only in special

applications may the flux shape be required to be positive.

Given non-negative inflow fluxes and distributed source, negative fluxes are, with a notable

exception, a local phenomenon that can be explained by considering the solution process in a

single cell. For the transport problem to be physically meaningful, the boundary conditions and

distributed source are non-negative, so at least for the boundary cells, these conditions are true

if the subject boundary condition is on an upstream face of the boundary cell. Once negative

fluxes occur for the first cell, the conditions mentioned before are not valid anymore and cells

that would under normal circumstances not produce negative fluxes might do so because the

inflow and/or sources are negative.

160



www.manaraa.com

This work will therefore look more closely at a single cell that satisfies the said conditions

and examine under which circumstances the outgoing face fluxes can become negative. Within

this work, single cell coupling coefficients are defined and used to explain the behavior of several

methods that produce negative average fluxes in subsection 5.2.1. In subsection 5.2.2, Lathrop’s

test case is used to compare method’s susceptibility to negative fluxes using the metrics defined

in section 3.4.

5.2.1 Single Cell Coupling Coefficients

Following Eq. 4.22 and extending slightly to account for methods other than DGFEM, the

within-cell set of equations is written as:

T~ψh,
~i

n = ~bh,
~i

S +
∑
F∈EI

AF
~ψh,

~i
n,F , (5.43)

where matrices AF are of size (Λ + 1)3 × (Λ + 1)2, T is of size (Λ + 1)3 × (Λ + 1)3, and ~bh,
~i

S

contains the contributions from the distributed and scattering sources. The solution to Eq.

5.43 is then given by:
~ψh,

~i
n = T−1~bh,

~i
S +

∑
F∈EI

T−1AF
~ψh,

~i
n,F . (5.44)

Within this section, the quantity of interest are the face fluxes. The face fluxes can be

obtained from the volume flux moments/expansion coefficients by upstreaming (DGFEM) or

substitution into the WDD equations (LL, LN, AHOTN, HODD). In general, the face flux

moments/expansion coefficients are linear combinations of the volume flux moments/expansion

coefficients such that the face fluxes can in general be written as:

~ψh,
~i

n,F ′ = BF ′T
−1~bh,

~i
S +

∑
F∈EI

BF ′T
−1AF

~ψh,
~i

n,F , (5.45)

where BF ′ is a matrix relating the volume flux moments/expansion coefficients to the face flux

moments/expansion coefficients. Defining CS = BF ′T
−1 and CF,F ′ = BF ′T

−1AF , Eq. 5.45

yields:
~ψh,

~i
n,F ′ = CS

~bh,
~i

S +
∑
F∈EI

CF,F ′
~ψh,

~i
n,F . (5.46)

The outflow face angular fluxes are a linear combination of the inflow face angular fluxes and

the source. The single-cell coupling coefficients are the linear combination coefficients encoded

in the matrices CS and CF,F ′ . The coupling coefficient of outflow flux moment ~mF ′ and inflow
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flux moment ~mF or source moment ~m can be retrieved by:

Inflow/Outflow coupling : c~m
F→~mF

′

F,F ′ =
∂ψh,

~i

n,~mF ′

∂ψh,
~i

n,~mF

Source coupling : c~m→~mF
′

S =
∂ψh,

~i

n,~mF ′

∂Sh,
~i

~m

(5.47)

In this subsection the focus shall be on the outflow face-averaged angular flux coupling coeffi-

cients denoted by:

Inflow/Outflow coupling : c̄~m
F

F,F ′ =
∂ψ̄h,

~i
n,F ′

∂ψh,
~i

n,~mF

Source coupling : c̄~mS,F =
∂ψ̄h,

~i
n,F ′

∂Sh,
~i

~m

. (5.48)

The outflow face-averaged angular fluxes can now be computed exactly using the formula:

ψ̄h,
~i

n,F ′ =
∑
~m

c̄~mS,FS
h,~i
~m +

∑
F∈EI

∑
~mF

c̄~m
F

F,F ′ψ
h,~i
n,~mF

. (5.49)

The signs and relative magnitudes of the coupling coefficients determine how prone a dis-

cretization method is towards developing negative face-averaged outflow fluxes. If the inflow

and the source are flat, i.e. ψh,
~i

n,~mF
= 0 except for ~mF = (0, 0)T and Sh,

~i
~m = 0 except for

~m = (0, 0, 0)T , then the particular outflow face flux average is related to the inflow and source

averages by just four coupling coefficients.

In general, the distributed source and inflow face fluxes are not flat, but we shall restrict our

discussion here to a “model” cell where they are. This would amount to ignoring the effect of

higher-order face and volume source moments on the positivity of the averaged outflow fluxes.

The reason for not considering the higher-order moments can be stated as follows:

• Clarity: The large number of coupling coefficients would not allow for a clear discussion

if the influence of higher-order inflow/source moments was considered.

• Importance: The average inflow face fluxes are assumed to have the highest influence on

the average outflow face fluxes.

• Positive definiteness: Averages are required to be non-negative, but higher-order moments

can be either positive or negative3. Thus, a coupling coefficient relating inflow and outflow

3They might represent slopes for example.
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averages is problematic if and only if it is negative. For higher-order coupling coefficients

this simple rule does not hold. Rather, magnitude and sign of all coefficients must be

considered in conjunction with all other coupling coefficients and with signs of higher-

order flux moments. This substantially complicates the analysis.

Average-Average Single Cell Coupling Coefficients

Adopting the simplified analysis outlined above, the outflow average flux can be written as:

Flat fluxes/source: ψ̄h,
~i

n,F ′ = c̄S,F S̄
h,~i +

∑
F∈EI

c̄F,F ′ψ̄
h,~i
n . (5.50)

The exact solution of the mono-directional transport problem given flat inflow fluxes and dis-

tributed source can be obtained analytically. As a matter of fact, this analytical solution is

implemented in the Step Characteristic method, i.e. the SC method obtains the exact answer

to problems featuring flat inflow fluxes and distributed source.

It is noteworthy that not all inflow faces are coupled to all outflow faces, i.e. some c̄F,F ′

are exactly zero. However, with the exception of characteristic discretization methods, all

discretization methods couple face-averaged fluxes incorrectly; they feature a non-zero cou-

pling coefficient where the exact coupling coefficient should be zero. The question that will

be answered within this section is which of the coupling coefficients become negative when the

optical cell thickness is increased raising the potential for negative cell-averaged outflow fluxes.

In particular, the question examined here is whether correctly coupled but negative coupling

coefficients, or negative incorrectly coupled coupling coefficients cause negative outflow fluxes.

The coupling coefficients, c̄F,F ′ and c̄S,F , are obtained by using the finite difference repre-

sentation of Eq. 5.48:

Inflow/Outflow coupling : c̄F,F ′ =
ψ̄h,

~i
n,F ′

([
ψ̄h,

~i
n,F

]
1

)
− ψ̄h,~in,F ′

([
ψ̄h,

~i
n,F

]
2

)
[
ψ̄h,

~i
n,F

]
1
−
[
ψ̄h,

~i
n,F

]
2

Source coupling : c̄S,F =
ψ̄h,

~i
n,F ′

([
S̄h,

~i
]

1

)
− ψ̄h,~in,F ′

([
S̄h,

~i
]

2

)
[
S̄h,~i

]
1
−
[
S̄h,~i

]
2

, (5.51)

which does not incur any approximation because of the linear relationship between inflow/source

and outflow fluxes. In Eq. 5.51, the square brackets indicate a specific choice of the inflow face-

averaged flux or the volume-averaged source. For obtaining all ten coupling coefficients, the

within-cell equations have to be solved four times. For each of these within-cell solves, a unit

inflow averaged flux on a single face or a unit source average is set, and all other inflow/source
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Figure 5.34: Coupling coefficients c̄S,F versus σt for test case I (unity aspect ratio) and AHOTN,
HODD, DGLA, and DGC of orders Λ = 0, ...4.

values are set to zero. Then, the resulting outflow flux averages are equal to the desired coupling

coefficients.

The Source to Outflow Coupling Coefficients - Numerical Results

Two test cases are considered which vary in the cell’s optical aspect ratio: Test case I has an

optical aspect ratio of unity ∆x = ∆y = ∆z and Ω̂ =
(
1/
√

3, 1/
√

3, 1/
√

3
)T

, while test case

II features ∆x = 2,∆y = 1,∆z = 1/2 and the same Ω̂. For both cases the total cross section

is varied from σt = 0.01 up to σt = 100.0. For test case I all c̄S,F are identical, while for test
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Figure 5.35: Coupling coefficients c̄S,E (East outflow face) versus σt for test case II (non-unity
aspect ratio) and AHOTN, HODD, DGLA, and DGC of orders Λ = 0, ...4.
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Figure 5.36: Coupling coefficients c̄S,N (North outflow face) versus σt for test case II (non-unity
aspect ratio) and AHOTN, HODD, DGLA, and DGC of orders Λ = 0, ...4.
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case II the coupling coefficients differ between the different outflow faces. The said coupling

coefficients are plotted versus σt in Figs. 5.34, 5.35, and 5.36 for test cases I (generic outflow

face) and II (East and North outflow face), respectively.

The most important finding from Figs. 5.34 through 5.36 is that the coupling coefficient c̄S,F

is always positive. The immediate conclusion from this finding is that increasing the average

source decreases the risk of negative outflow fluxes. In regions with strong distributed sources

or large scattering cross sections, negative fluxes are less likely to occur. Second, the coupling

with the volumetric cell source cannot cause negative outflow average fluxes because, by the

conditions of a “healthy” mesh cell the cell, the averaged source is positive and so is the coupling

coefficient, which ensures a positive contribution to the face averaged outflow fluxes.

The Inflow to Outflow Coupling Coefficients - Numerical Results

For discussion of the face-to-face average coupling coefficients the attention shall be restricted

to test case II. In Figs. 5.37 through 5.39, the average coupling coefficients, c̄F,F ′ , are plotted

for various discretization methods of order Λ = 0, 1, and 2, respectively.

The dashed, red line indicates the evolution of the exact coupling coefficients with increasing

total cross section. Clearly, the West and East and South and North faces are uncoupled, while

the Bottom and Top faces are coupled, but the coupling coefficient drops significantly when

increasing σt to about unity. Therefore, one could consider the Bottom to Top coupling as

weak. Note, all these face-to-face coupling combinations are of type −k → +k, i.e. coupling of

faces that are normal to the same coordinate axis (e.g. West (-x) to East (+x)).

It is in particular for the −k → +k, k = x, y, z face pairs that the numerical methods

produce inaccurate coupling coefficients that do not even qualitatively reproduce their exact

counterparts. For all other combinations, the numerical coupling coefficients reproduce the ex-

act ones to a much higher fidelity. Negative face-averaged fluxes are caused by large magnitude

negative coupling coefficients, which occur for the −k → +k, k = x, y, z combinations.

Looking at the West to East coupling coefficient obtained for the HODD method of orders

Λ = 0, 1, and 2, an even-odd pattern emerges: for all expansion orders c̄W,E is large in magnitude

but for Λ = 0, and Λ = 2 it is negative, while for Λ = 1 it is positive. The opposite observation

holds true for the DGLA and DGC method: for Λ = 0 and Λ = 2 , c̄W,E is positive, while

it is negative for Λ = 1. Since the highest interpolation order for the DGLA/DGC-(Λ + 1)

method is identical to the interpolation order of the HODD-Λ method, the results suggest that

for even interpolation orders, the −k → +k, k = x, y, z coupling coefficients are positive, and

for odd interpolation orders they are negative. This behavior is expected to be visible in an

even-odd pattern when comparing the performance of discretization methods with respect to

their resilience against negative fluxes.
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The inadequacy of the HODD method for meshes with large cell optical thicknesses dis-

cussed in subsection 5.1.6 is visible in Figs. 5.37 through 5.39 in that the HODD method’s

−k → +k, k = x, y, z coupling coefficients are the only ones that limit to ±1 when increasing

the total cross sections. This is an unphysical behavior because it defies the increasing atten-

uation that is expected when increasing the cell optical thickness. For the particular case of

a negative coupling coefficient it translates into the occurrence of large negative outflow face-

averaged fluxes for optically thick cells. In contrast, the DGLA and DGC methods may feature

moderately large magnitude, negative coupling coefficients for intermediate optical thicknesses,

σt ≈ 10, but these coupling coefficients limit to zero as σt →∞.

In summary, looking at the face-to-face average coupling we learned a lot about the cause

of negative outflow face-averaged fluxes. Neglecting the influence of higher-order flux moments,

we found that faces that should be uncoupled or only weakly coupled, in particular the W → E,

S → N , and B → T , the exact coupling is not adequately represented by equations comprised

in the numerical methods. For odd interpolation orders, these coupling coefficients become

negative, leading to negative outflow face-averaged fluxes. For even interpolation orders the

numerical coupling coefficients tend to be positive, thus not causing problems for the positivity

of the discretization method.

5.2.2 Numerical Results from Lathrop’s Test Problem

In this subsection, results from numerical experiments utilizing Lathrop’s test problem, de-

scribed in section 3.4, are presented to investigate the resilience of spatial discretization meth-

ods against negative fluxes for an SN problem for which obtaining strictly positive flux proved

to be difficult. First, the dependence of the methods’ resilience against negative fluxes on the

interpolation order is discussed. Subsequently, based on parameters listed in Table 3.4, methods

are compared to one another to rank performance with respect to flux positivity.

The negativity measures τwψ and τwφ , defined in section 3.5, are used to measure the extent

of negative fluxes. The magnitude of τwψ and τwφ should vary from zero to one with one being

the worst and zero being an entirely positive solution. However, cases are possible where the

magnitude of τwψ and τwφ may be greater than one because the numerator and denominator in

Eq. 3.47 are not taken from the same solution. The numerator comes from the solution obtained

on a typically coarse mesh, while the denominator ideally comes from the exact solution which

is replaced by a fine mesh solution in practice.

In Fig. 5.40 the τwψ measure is plotted versus the interpolation order for various discretiza-

tion methods. The presented results are obtained from the Lathrop-III-1 test case. From the

obtained data, a clear pattern emerges that confirms the expectation from the results presented

in the preceding subsection: odd interpolation orders are more prone to developing negative

168



www.manaraa.com

0 20 40 60 80 100
Total cross section σt

1.0

0.8

0.6

0.4

0.2

0.0

0.2

c̄ W
,E

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.00

0.05

0.10

0.15

0.20

0.25

0.30

c̄ W
,N

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.00

0.05

0.10

0.15

0.20

0.25

0.30

c̄ W
,T

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

c̄ S
,E

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

c̄ S
,N

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

c̄ S
,T

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c̄ B
,E

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c̄ B
,N

HODD
AHOTN
Step
Reference

0 20 40 60 80 100
Total cross section σt

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

c̄ B
,T

HODD
AHOTN
Step
Reference

Figure 5.37: Coupling coefficients c̄F,F ′ for F = W,S,B and F = E,N, T versus σt for test
case II and AHOTN, HODD, DGLA and DGC of order Λ = 0. Note, DGLA and DGC are
essentially the same method, the Step Method.
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Figure 5.38: Coupling coefficients c̄F,F ′ for F = W,S,B and F ′ = E,N, T versus σt for test
case II and AHOTN, HODD, DGLA and DGC of order Λ = 1.
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Figure 5.39: Coupling coefficients c̄F,F ′ for F = W,S,B and F = E,N, T versus σt for test case
II and AHOTN, HODD, DGLA and DGC of order Λ = 2.

171



www.manaraa.com

0 1 2 3 4 5
Interpolation Order

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

τ
w ψ

AHOTN, h=1.0 cm
AHOTN, h=0.5 cm
HODD, h=1.0 cm
DGLA, h=1.0 cm
DGC, h=1.0 cm

Figure 5.40: Negativity measure τwψ versus interpolation order for AHOTN, HODD, DGLA,
and DGC methods for test case Lathrop-III-1.

fluxes than even expansion orders. This behavior is most pronounced for the DGLA and DGC

methods, but also visible for the HODD and AHOTN methods. The AHOTN method features

the least fluctuations with variation of Λ. The immediate consequence of this finding is that

even interpolation orders should be preferred over odd interpolation orders if positivity of the

solution is desired.

In Fig. 5.41, τwψ and τwφ are plotted versus the cell optical thickness for Lathrop-I-1, Lathrop-

II-1, and Lathrop-III-1 test cases. As τwψ and τwφ can both become exactly zero, causing problems

for the utilized loglog plots, we set:

τwk ← min
(
τwk , 10−12

)
.

Hence, values for τwψ and τwφ of 10−12 should be considered effectively zero.

For sufficiently fine meshes, both τwψ and τwφ decrease with further mesh refinement demon-

strating that positivity of the solution can be restored with mesh refinement. The scalar flux
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Figure 5.41: Evolution of negativity measures τwψ and τwφ with refinement for Lathrop-I-1,
Lathrop-II-1, and Lathrop-III-1 test cases.
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measure τwφ even completely vanishes for reasonable mesh refinement levels when using the

DGLA or DGC methods of order one. However, for the hardest test case, Lathrop-III-1, the

finest utilized mesh features 1923 ≈ 7 × 106 cells and a positive definite angular flux is not

attained. From this perspective, today’s computational resources may not always suffice to

solve challenging problems on meshes that are resolved enough to guarantee positive definite

solutions.

From the discussion of the coupling coefficients and the mesh refinement study Fig. 5.41,

we inferred that negative fluxes occur on meshes that tend to feature optically thick cells on the

order of about one to several mean free path. However, increasing the optical thickness further

may decrease the negativity measure τwψ , as seen in Fig. 5.41 where most curves develop maxima

for cells featuring in between one and ten mean-free paths. This observation is corroborated by

the coupling coefficients described in the preceding subsection that cause negative cell outflow

fluxes, some of which peak around cell optical thicknesses of this order, while others may start

as large and negative and then limit to zero for σt →∞.

However, in the latter case, the positive coupling coefficients drop significantly from large

positive values to almost zero when increasing the cell optical thickness to about one mfp. The

large, positive coupling coefficients prevented the occurrence of negative outflow face-averaged

fluxes, even with a single sizable negative coupling coefficient on optically thin meshes. The

exception are the Diamond Difference results, which exhibit monotonically decreasing coupling

coefficients that limit to −1. Even those, however, develop a maximum in their τwψ curves

between one and ten mfp cell thicknesses. Additionally, further increasing the cell optical

thickness leads to a sharp increase in τwψ for DD, which is not observed for the other depicted

methods.

Comparing the evolution of τwψ and τwφ curves for the same discretization method but dif-

ferent problem parameters (I-1, II-1, and III-3) shows differences up to about one order of

magnitude. Therefore, the presence of negative fluxes in a solution measured via τwψ and τwφ de-

pends on the problem at hand; there is no universal curve that holds true for all test problems.

However, the normalization to the problem’s flux magnitude leads to τwk , k = ψ, φ curves that

are of the same order of magnitude for different problem parameters. This leads to the hope

that results obtained from Lathrop’s test problem can be used to judge a solution’s resilience

against negative fluxes for other problems.

In Figs. 5.42 and 5.43, τwψ and τwφ obtained for the L-III-1 problem are plotted versus the

mesh spacing for various discretization methods in order to compare their resilience against

negative flux solutions. Clearly, as conjectured, odd interpolation orders should be avoided

as the performance is always worse than for the same discretization method employing an

even interpolation order. Similarly, the HODD method’s solution for all expansion orders is

worse compared to the DGLA, DGC, and AHOTN methods of the equivalent interpolation
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Figure 5.42: Negativity measure τwψ versus mesh spacing for test case Lathrop-III-1 and various
spatial discretization methods.
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Figure 5.43: Negativity measure τwφ versus mesh spacing for test case Lathrop-III-1 and various
spatial discretization methods.
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order. Therefore, utilizing HODD is also not recommended if resilience against negative fluxes

is desired, i.e. small τwψ or τwφ .

The choices that guarantee positive solutions are the Step Method (DGLA-0/DGC-0) and

the Step Characteristic Method. However, those may be undesirable due to their poor accuracy.

Therefore, in the remainder of this chapter the best alternatives to these methods shall be

investigated.

In particular, four methods perform exceptionally well for the Lathrop-III-1 test case:

AHOTN, DGLA, and DGC of order Λ = 2, and the Simple Corner Balance Method (SCB).

While the first three methods’ solutions exhibit negative fluxes, the SCB method’s solution

is positive for the Lathrop-III-1 test problem. This observation holds for both τwψ and τwφ ,

depicted in Figs. 5.42 and 5.43, respectively. In contrast, AHOTN-2, DGLA-2, and DGC-2

obtain positive solutions only for the last mesh refinement level (1963 ≈ 7 × 106 mesh cells).

Among these three methods, the DGLA-2 method performs slightly better than the other two.

While performing poorly for the τwψ indicator, the AHOTN-0 method is among the better

performing methods for the τwφ measure depicted in Fig. 5.43, competing with the results

obtained by the AHOTN, DGLA and DGC methods of order Λ = 2. Finally, the LL and LN

methods perform almost identical to the AHOTN-1 method, and therefore do not belong to

the set of well-performing methods with regards to solution positivity.

In Fig. 5.44 τwψ obtained for the Lathrop-III-2 test case is depicted. The results for the

τwφ measure yield the same conclusions as stated before and are therefore omitted. Changing

the scattering ratio from 0.1 to 0.5 leaves many of the conclusions from the Lathrop-III-1 test

problem unchanged. Remarkably, the SCB method still features a strictly positive solution;

AHOTN-2, DGLA-2, and DGC-2 remain the runner-up methods. In contrast to the Lathrop-

III-1 test problem, the DGLA-2 method performs significantly better than the DGC-2 method.

Comparing AHOTN-2 and DGLA-2, the obtained τwψ values are comparable at larger mesh

sizes, but DGLA returns a positive definite solution for the finest two meshes while AHOTN-2

does not.

Surprisingly, the AHOTN-0 method obtains a positive definite solution for all but the last

mesh refinement level. This behavior differs significantly from the AHOTN-0 performance for

the Lathrop-III-1 test case, where AHOTN-0 belongs to the set of poorly performing methods.

Finally, in Fig. 5.45 τwψ results are plotted for the Lathrop-III-3 test problem (scattering

ratio of 0.9). With the exception of the LL, LN, DD, HODD-1, HODD-2 and all third-order

methods, the obtained solutions for Lathrop-III-3 are strictly positive. That demonstrates that

with increasing scattering ratio, the difficulty of obtaining a positive solution decreases. The

HODD-0,1,2 methods’ results are particular in that the solutions start out positive on coarse

meshes and develop negative solutions with mesh refinement. Starting from these intermediate

meshes, further mesh refinement is expected to decrease the measure τwψ , and strictly positive

176



www.manaraa.com

10-2 10-1 100 101

Mesh Spacing h
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

τ
w ψ

AHOTN-0
AHOTN-1
HODD-0
HODD-1
DGLA-1
DGC-1
SCB
LL
LN

10-2 10-1 100 101

Mesh Spacing h
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

τ
w ψ

AHOTN-2
HODD-2
DGLA-2
DGC-2
HODD-3
DGLA-3
AHOTN-3
DGC-3

Figure 5.44: Negativity measure τwψ versus mesh spacing for test case Lathrop-III-2 and various
spatial discretization methods.
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Figure 5.45: Negativity measure τwψ versus mesh spacing for test case Lathrop-III-3 and various
spatial discretization methods.
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solutions are expected on very fine meshes. In contrast, the LL, LN, and all third order methods

exhibit τwψ that decrease with mesh refinement. The largest τwψ are obtained for the LL and LN

methods. These results underscore several facts that were already pointed out before:

• Odd order methods are more prone to negative fluxes than even orders.

• The HODD method is more prone to negative fluxes than any of the other family of

methods.

• The LL/LN methods are prone to negative fluxes, even for problems for which other

methods produce strictly positive solutions.

• While worse in its resilience against negative fluxes than AHOTN-0 or AHOTN-2, the

AHOTN-1 methods is still much better than the HODD-1 methods for example.

5.2.3 Negative Solutions and First Collision Source

Negative fluxes develop predominantly in regions with small distributed sources and/or scat-

tering ratios. This is because larger cell-averaged sources always increase the flux levels, and

reduce the likelihood of negative coupling from the inflow face fluxes to cause negative outflow

average fluxes. In the particular case of Lathrop’s test problem, negative fluxes occur in the

outlying regions that feature no distributed source. The flux in the outlying regions comes from

neutrons streaming from the central source region into the outlying region. In the discretization

methods, streaming is represented by coupling of the inflow and outflow faces. As discussed

in subsection 5.2.1, the coupling coefficients of the face averages can become negative, finally

leading to negative volumetric fluxes in the source-free region.

Another problem associated with SN solutions in large, source-free, low-scattering regions

are ray effects[23]. While ray effects can produce negative fluxes, their predominant detriment

to the SN solution is that cells that are not intersected by a discrete ordinate drawn from the

localized source to the said cell will feature a nonphysically small flux, or a zero flux in cases

where the medium is non-scattering.

One well-known and effective remedy for ray effects is using a first collision source[23], [65],

[66]. The solution is decomposed into the uncollided flux and the collided flux. The uncollided

flux can be computed by a process called ray-tracing: Draw lines from the point source to

the considered mesh cell and compute the optical length of these lines. The contribution from

the point source to the flux within the mesh cell can be computed by simple exponential

attenuation4. The collided flux is then computed by setting up the transport equation in a way

4This simplifies the process implemented in GRTUNCL[66] significantly. In fact, contributions from the source
to the cell’s scalar flux need to be accumulated for all angular directions that have intersections with the said
mesh cell.
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Figure 5.46: Negativity measure τwψ versus scattering ratio for DD solutions with and without
using the first collision source.

that the scattering source spawned by the uncollided flux is used as external distributed source.

The key item that is of interest within this subsection is that the ray-tracing procedure

creates a positive uncollided flux and hence a positive first-collision source. Therefore, the hope

is that the first collision source may alleviate or even effectively eliminate negative fluxes in

source-free, low-scattering regions.

For test purposes, the Lathrop-III test problem is solved for various scattering ratios on

a 243 mesh (optical cell thickness: 2 mfp ) with and without using the first collision source,

computed by the first collision source algorithm implemented in DENOVO[24]. The negative-

flux prone Diamond Difference discretization method is utilized for this test. The results in the

τwφ measure are depicted in Fig. 5.46. While using the first collision source reduces τwφ by up

to three orders of magnitude, it does not eliminate negative fluxes.

In summary, using a first collision source for the solution of the SN transport problem even

if ray-effects are not present, alleviates the problem of negative fluxes significantly. However, it

does not eliminate negative fluxes, and thus falls short of the optimistic expectations.
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5.3 Thick Diffusion Limit Problems

In this section certain properties of selected discretization schemes in the thick diffusion limit

defined in section 3.6.1 are examined. This section augments findings in Ref. [7]: for several

low-order methods, Diamond Difference, HODD-1, AHOTN-0, AHOTN-1, LL, and LN analysis

will be presented that either shows that the respective methods do not have a diffusion limit

or that they are candidates for having it. As the analysis in [7] already comprises the DGC-0,1

and DGLA-0,1 methods, these results shall only be tested numerically and no further analysis

is performed on these methods in this work.

Numerical experiments based on the test case presented in sec. 3.6.1 are performed for

all competing methods to support and extend the analysis performed for Diamond Difference,

HODD-1, AHOTN-0, AHOTN-1, LL, and LN methods. This is only the first part of the analysis

done in Ref. [7], which in addition looks at the robustness of methods in the thick diffusion limit

and the quality of the boundary conditions. This extended analysis is not performed within

this work.

Note, the notation is slightly modified in the following analysis in order to avoid excessively

lengthy spatial indices. The discrete ordinates index becomes a superscript, while the spatial

index becomes a subscript. The superscript h indicating approximate solution is dropped

because all considered fluxes within this section are approximate fluxes.

5.3.1 Review of Adams Analysis

Adam’s analysis is performed for the first order Discontinuous Finite Element Methods labeled

DGLA-1 and DGC-1 within this work. In general, the method can be written as:

Ω̂ ·
[
Ls~i
~ψn,s~i

+ L~i
~ψn~i

]
+

1

ε
T~i
~ψn~i =

1

4π

[
1

ε
T~i − εA~i

]
~φ~i +

ε

4π
~Q~i, (5.52)

where Ls~i is a surface matrix, L~i is a stiffness matrix, T~i = σtM~i is a mass matrix times the

total cross section, A~i = σaM~i is a mass matrix times the absorption cross section, ~ψn,s~i
collects

all the surface unknowns and ~ψn~i the volume unknowns. The cell index is denoted, as usual, by

~i.

The following asymptotic expansions for the volume and surface unknowns are introduced:

~ψn~i (~r) =

∞∑
p=0

εp ~ψ
n,[p]
~i

(~r) . (5.53)
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Substitution of Eq. 5.53 into 5.52 and collecting powers of ε gives:

O
(
ε−1
)

: ~ψ
n,[0]
~i

=
1

4π
~φ

[0]
~i

(5.54)

O (1) : Ω̂ ·
[
Ls~i
~ψ
n,s,[0]
~i

+ L~i
~ψ

[0]

n,~i

]
+ T~i

~ψ
s,[1]
~i

=
1

4π
T~i
~φ
s,[1]
~i

. (5.55)

From Eq. 5.54 it can be inferred that the leading order solution is isotropic, i.e. it is independent

of direction index n.

Applying the quadrature operator
N∑
n=1

wn· to Eq. 5.55 leads to:

N∑
n=1

wn

[
Ω̂ · Ls~i

~ψ
n,s,[0]
~i

]
+

[
N∑
n=1

wnΩ̂

]
·L~i ~ψ

n,[0]
~i

= −T~i

[
N∑
n=1

wn ~ψ
s,[1]
~i

]
+

[
N∑
n=1

wn

]
1

4π
T~i
~φ
s,[1]
~i

. (5.56)

Typical quadrature rules satisfy the following two conditions:

N∑
n=1

wn = 4π

N∑
n=1

wnΩ̂ = ~0. (5.57)

Using Eq. 5.57 in Eq. 5.56 results in:

N∑
n=1

wn

[
Ω̂ · Ls~i

~ψ
n,s,[0]
~i

]
= 0. (5.58)

Labeling the surfaces with index l and expanding the expression Eq. 5.58 according to the

definition in [7] gives:

L~i∑
l=1

∫
El

dSv~i,m


 ∑
n̂·Ω̂>0

wn

(
n̂~i,k · Ω̂

)
ψn,[0]
n

(
~r+
)+

 ∑
n̂·Ω̂<0

wn

(
n̂~i,k · Ω̂

)
ψn,[0]
n

(
~r−
) = 0,

(5.59)

where v~i,m is the mth test function, and ~r+ and ~r− are points on the faces just inside (interior

trace) and outside (exterior trace) of the cell, respectively. Note that while DGFEM equations

are local to each mesh cell, one could assemble a global system of equations by numbering test

functions consecutively throughout all cells.

181



www.manaraa.com

Now, since the leading order solution is isotropic, Eq. 5.59 can be manipulated to:

L~i∑
l=1

∫
El

dSv~i,m

∑
n̂·Ω̂>0

wn

(
n̂~i,k · Ω̂

) [
φn,[0]

(
~r+
)
− φn,[0]

(
~r−
)]

= 0, (5.60)

Equation 5.60 relates the scalar flux within a cell to the upstream scalar fluxes and the boundary

conditions. Thus, it can be used to assemble the global system of equations with the unknowns

being the leading order scalar fluxes on the faces:

B~φ = ~β, (5.61)

where ~φ collects all the interior face scalar flux unknowns and ~β is a vector that depends only

on the boundary conditions and, in case of vacuum boundary conditions, is zero.

If the coefficient matrix B has full rank, then the problem’s solution is determined solely

by the boundary conditions, and in case of vacuum boundary conditions, is zero everywhere.

This is unphysical because the solution of the SN problem must also depend on the distributed

source and material properties, which are not present in Eq. 5.61. Therefore, the conclusion is

that the method cannot have a diffusion limit if the matrix B in Eq. 5.61 has full rank, but it

may have a diffusion limit if B is rank-deficient.

5.3.2 Application of Adams’ Analysis to First Order HODD and TMB Meth-

ods

In this section, the first stage of Adam’s analysis is adapted to Balance-WDD style methods and

applied to the Diamond Difference, HODD-1, AHOTN-0, AHOTN-1, LL, and LN methods to

infer whether they have the potential to possess the thick diffusion limit. As all these methods

share the same structure of equations, i.e. balance relations augmented with WDD relations,

the balance relations shall be first analyzed, followed by the analysis of the six methods.

Analysis of the Balance Equations

The scaled balance equation of order ~m is given by:

∑
k=x,y,z

µn,k
∆k

ψn~i+1/2êk, ~mk
− (−1)mk ψn~i−1/2êk, ~mk

− 2

[(mk−1)/2]∑
l=0

(2mk − 4l − 1)ψn~i,~m−(2l+1)êk


+

σt
ε
ψn~i,~m =

1

4π

(σt
ε
− εσa

)
φ~i,~m +

ε

4π
Q~i,~m, (5.62)
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where position indices~i± êk/2 denote face flux-moments. Introducing a power series expansion

in terms of ε for ψn~i,~m:

ψn~i,~m =
∞∑
p=0

εpψ
n,[p]
~i,~m

ψn~i±êk/2, ~m
=

∞∑
p=0

εpψ
n,[p]
~i±êk/2, ~m

, (5.63)

substituting it into Eq. 5.62, and then collecting equal powers of ε leads to:

O
(
ε−1
)

: ψ
n,[0]
~i,~m

=
1

4π
φ

[0]
~i,~m

(5.64)

O (1) :
∑

k=x,y,z

µn,k
∆k

[
ψ
n,[0]
~i+1/2êk, ~mk

− (−1)mk ψ
n,[0]
~i−1/2êk, ~mk

]

−
∑

k=x,y,z

2µn,k
∆k

[(mk−1)/2]∑
l=0

(2mk − 4l − 1)ψ
n,[0]
~i,~m−(2l+1)êk


+ σtψ

n,[1]
~i,~m

=
σt
4π
φ

[1]
~i,~m

. (5.65)

From Eq. 5.64 we conclude that ψ
n,[0]
~i,~m

is isotropic, i.e. does not depend on the n index.

Applying the quadrature
N∑
n=1

wn to Eq. 5.65 and noting that the quadrature rule satisfies Eq.

5.57 yields:
N∑
n=1

wn

 ∑
k=x,y,z

µn,k
∆k

[
ψ
n,[0]
~i+1/2êk, ~mk

− (−1)mk ψ
n,[0]
~i−1/2êk, ~mk

] = 0 (5.66)

Note that Eq. 5.66 evaluates for all possible combinations of mx, my and mz such that for

HODD-1, for example, there would be 8 different instances of this equation. From here, asymp-

totic analysis of the WDD relations that are particular for each of the methods: HODD-1,

AHOTN-1, LL, and LL are used to assemble the global matrix B by relating the face fluxes in

cell ~i to the volumetric angular flux moments in this and the neighboring cells.

Analysis of the HODD-1 Method

The HODD-1 WDD relations are given by:

sgn (µk,n)

2

(
ψn~i+1/2êk, ~mk

− ψn~i−1/2êk, ~mk

)
= 3ψn~i,~gk

, (5.67)
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with ~gk being defined as:

~gk =


(1,my,mz)

T if k = x

(mx, 1,mz)
T if k = y

(mx,my, 1)T if k = z.

(5.68)

Substituting Eq. 5.63 and retaining only the O (1) terms gives:

sgn (µk,n)

2

(
ψ
n,[0]
~i+1/2êk, ~mk

− ψn,[0]
~i−1/2êk, ~mk

)
= 3ψ

n,[0]
~i,~gk

. (5.69)

From Eq. 5.69 we want to develop relations to eliminate the face fluxes from Eq. 5.66. If

mk is even, then we can just multiply by 2/sgn (µk,n):(
ψ
n,[0]
~i+1/2êk, ~mk

− ψn,[0]
~i−1/2êk, ~mk

)
=

6

sgn (µk,n)
ψ
n,[0]
~i,~gk

. (5.70)

If mk is odd, then we need to find an expression for ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

. This can be

accomplished by adding twice the WDD relation owned by the neighboring upstream cell:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12ψ
n,[0]
~i−êk,~gk

+ 2ψ
n,[0]
~i−3/2êk, ~mk

µk,n < 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12ψ
n,[0]
~i+êk,~gk

+ 2ψ
n,[0]
~i+3/2êk, ~mk

. (5.71)

Note that additional face terms located on the ~i± 3/2êk face appeared in Eq. 5.71, which need

to be eliminated. Thereto, the WDD relations for the ~i± 2êk cell can be utilized:

µk,n > 0 :

ψ
n,[0]
~i−3/2êk, ~mk

= 6ψ
n,[0]
~i−2êk,~gk

+ 2ψ
n,[0]
~i−5/2êk, ~mk

µk,n < 0 :

ψ
n,[0]
~i+3/2êk, ~mk

= 6ψ
n,[0]
~i+2êk,~gk

+ 2ψ
n,[0]
~i+5/2êk, ~mk

. (5.72)

Substitution into Eq. 5.71 gives:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12ψ
n,[0]
~i−êk,~gk

+ 12ψ
n,[0]
~i−2êk,~gk

+ 2ψ
n,[0]
~i−5/2êk, ~mk

µk,n < 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12ψ
n,[0]
~i+êk,~gk

+ 12ψ
n,[0]
~i+2êk,~gk

+ 2ψ
n,[0]
~i+5/2êk, ~mk

. (5.73)
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We can continue using the WDD relations of neighboring cells in this manner until we reach

the boundary at which point we obtain the following equation:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12

ik−1∑
l=1

ψ
n,[0]
~i−lêk,~gk

+ 2ψ
n,[0]

1/2, ~mk

µk,n < 0 :

ψ
n,[0]
~i+1/2êk, ~mk

+ ψ
n,[0]
~i−1/2êk, ~mk

= 6ψ
n,[0]
~i,~gk

+ 12

Ik−ik∑
l=1

ψ
n,[0]
~i+lêk,~gk

+ 2ψ
n,[0]

Ik+1/2êk, ~mk
, (5.74)

where dimension k features Ik linear intervals. Substituting Eq. 5.74 into Eq. 5.66 results in:

6

N∑
n=1

wn

 ∑
k:mk even

|µn,k|
∆k

ψ
n,[0]
~i,~gk


+

∑
µn,k>0

wn

 ∑
k:mk odd

|µn,k|
∆k

[
6ψ

n,[0]
~i,~gk

+ 12

ik−1∑
l=1

ψ
n,[0]
~i−lêk,~gk

+ 2ψ
n,[0]

1/2, ~mk

]
−

∑
µn,k<0

wn

 ∑
k:mk odd

|µn,k|
∆k

[
6ψ

n,[0]
~i,~gk

+ 12

Ik−ik∑
l=1

ψ
n,[0]
~i+lêk,~gk

+ 2ψ
n,[0]

Ik+1/2êk, ~mk

] = 0, (5.75)

where the summation over angle for the odd mk is broken into two partial summations for µn,k

greater and smaller than zero. The notation k : mkeven/odd in the summation denotes that

that the summation over k is only performed if mk is even or odd, respectively.

Now, using the result that the volume moments are isotropic, Eq. 5.75 can be written in

terms of scalar flux volume moments:

∑
k:mk even

6φ
[0]
~i,~gk

{
N∑
n=1

wn
|µn,k|
∆k

}
+

∑
k:mk odd

[
6φ

[0]
~i,~gk

+ 12

ik−1∑
l=1

φ
[0]
~i−lêk,~gk

] ∑
µn,k>0

wn
|µn,k|
∆k


−

∑
k:mk odd

[
6φ

[0]
~i,~gk

+ 12

Ik−ik∑
l=1

φ
[0]
~i+lêk,~gk

] ∑
µn,k<0

wn
|µn,k|
∆k


= −8π

∑
µn,k>0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

1/2, ~mk

+ 8π
∑

µn,k<0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

Ik+1/2êk, ~mk

 .

(5.76)
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Typically, for angular quadratures, it holds that

wn = wn′ if µn,k = −µn′,k. (5.77)

At this point it is convenient to define the quantity ρk:

ρk = 2

 ∑
µn,k>0

wn
|µn,k|
∆k

 = 2

 ∑
µn,k<0

wn
|µn,k|
∆k

 =

{
N∑
n=1

wn
|µn,k|
∆k

}
, (5.78)

to rewrite Eq. 5.76 as:

6
∑

k:mk even

ρkφ
[0]
~i,~gk

+
∑

k:mk odd

{
1

2
ρk

[
6φ

[0]
~i,~gk

+ 12

ik−1∑
l=1

φ
[0]
~i−lêk,~gk

]
− 1

2
ρk

[
6φ

[0]
~i,~gk

+ 12

Ik−ik∑
l=1

φ
[0]
~i+lêk,~gk

]}

= −8π
∑

µn,k>0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

1/2, ~mk

+ 8π
∑

µn,k<0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

Ik+1/2êk, ~mk

 .

(5.79)

The terms involving odd mk can further be simplified by combining the two sums over k:

∑
k:mk even

ρkφ
[0]
~i,~gk

+
∑

k:mk odd

ρk

[
ik−1∑
l=1

φ
[0]
~i−lêk,~gk

−
Ik−ik∑
l=1

φ
[0]
~i+lêk,~gk

]

= −4π

3

∑
µn,k>0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

1/2, ~mk


+

4π

3
π
∑

µn,k<0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

Ik+1/2êk, ~mk

 . (5.80)

In the further development, a uniform mesh with ∆x = ∆y = ∆z and level symmetric

quadrature is assumed. Under these conditions it holds that

ρ = ρx = ρy = ρz. (5.81)
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Then, Eqs. 5.79 and 5.80 can be written in an even simpler form:

∑
k:mk even

φ
[0]
~i,~gk

+
∑

k:mk odd

[
ik−1∑
l=1

φ
[0]
~i−lêk,~gk

−
Ik−ik∑
l=1

φ
[0]
~i+lêk,~gk

]

= −4π

3ρ

∑
µn,k>0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

1/2, ~mk


+

4π

3ρ
π
∑

µn,k<0

wn

 ∑
k:mk odd

|µn,k|
∆k

ψ
n,[0]

Ik+1/2êk, ~mk

 . (5.82)

From Eq. 5.82, the B matrix can be constructed. A sparsity pattern plot of the HODD-1

method’s B matrix is depicted in Fig. 5.47 for a 43 mesh. The matrix is of size 512× 512 and

has full rank as determined by the Mathematica notebook listed in Appendix E.1. Therefore,

we conclude that the HODD-1 methods does not possess the thick diffusion limit.

1 200 400 512

1

200

400

512

1 200 400 512

1

200

400

512

Figure 5.47: Sparsity pattern plot of the HODD-1 B matrix. The matrix has full rank.
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Analysis of the Diamond Difference Method

The Diamond Difference method has a thick diffusion limit in one-dimensional slab geometry.

However, it will be shown in this analysis that it does not possess the thick diffusion limit in

three-dimensional Cartesian geometry. The Diamond Diamond Difference relations are given

by:
1

2

(
ψn~i+1/2êk

+ ψn~i−1/2êk

)
= ψn~i , (5.83)

where the moment indices are omitted because it is clear that for the Diamond Difference

method only the averages appear in the equations. Substituting the power series expansions,

Eq. 5.63, and retaining only the O (1) term leads to:

1

2

(
ψ
n,[0]
~i+1/2êk

+ ψ
n,[0]
~i−1/2êk

)
= ψ

n,[0]
~i

. (5.84)

In the balance equation we have terms of the form ψ
n,[0]
~i+1/2êk

−ψn,[0]
~i−1/2êk

, which shall be written

in terms of the cell-averaged fluxes. In order to obtain the desired differences of face-averaged

flux values, we subtract twice the DD relation, Eq. 5.84, of the upstream cell:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk

− ψn,[0]
~i−1/2êk

= 2ψ
n,[0]
~i
− 4ψ

n,[0]
~i−êk

+ 2ψ
n,[0]
~i−3/2êk

µk,n < 0 :

ψ
n,[0]
~i−1/2êk

− ψn,[0]
~i+1/2êk

= 2ψ
n,[0]
~i
− 4ψ

n,[0]
~i+êk

+ 2ψ
n,[0]
~i+3/2êk

. (5.85)

The average on the ~i± 3/2êk face can be replaced by using the DD equation of the ~i± 2êk cell:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk

− ψn,[0]
~i−1/2êk

= 2ψ
n,[0]
~i
− 4ψ

n,[0]
~i−êk

+ 4ψ
n,[0]
~i−2êk

− 2ψ
n,[0]
~i−5/2êk

µk,n < 0 :

ψ
n,[0]
~i−1/2êk

− ψn,[0]
~i+1/2êk

= 2ψ
n,[0]
~i
− 4ψ

n,[0]
~i+êk

+ 4ψ
n,[0]
~i+2êk

− 2ψ
n,[0]
~i+5/2êk

. (5.86)

The face average on the ~i ± (l + 1/2) can generally be removed by using the ~i ± (l + 1) DD
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equation such that the final result for Eq. 5.86 is:

µk,n > 0 :

ψ
n,[0]
~i+1/2êk

− ψn,[0]
~i−1/2êk

= 2ψ
n,[0]
~i

+ 4

ik−1∑
l=1

(−1)lψ
n,[0]
~i−lêk

− 2(−1)ikψ
n,[0]
1/2

µk,n < 0 :

ψ
n,[0]
~i−1/2êk

− ψn,[0]
~i+1/2êk

= 2ψ
n,[0]
~i

+ 4

Ik−ik∑
l=1

(−1)lψ
n,[0]
~i−lêk

− 2(−1)ik−Ik−1ψ
n,[0]
Ik+1/2êk

. (5.87)

Substitution of Eq. 5.87 into Eq. 5.66 yields:

∑
µn,k>0

wn

 ∑
k=x,y,z

|µn,k|
∆k

[
2ψ

n,[0]
~i

+ 4

ik−1∑
l=1

(−1)lψ
n,[0]
~i−lêk

− 2(−1)ikψ
n,[0]
1/2

]
+

∑
µn,k<0

wn

 ∑
k=x,y,z

|µn,k|
∆k

[
2ψ

n,[0]
~i

+ 4

Ik−ik∑
l=1

(−1)lψ
n,[0]
~i−lêk

− 2(−1)ik−Ik−1ψ
n,[0]
Ik+1/2êk

] = 0.

(5.88)

The leading order cell-averaged angular fluxes are isotropic and can be replaced by scalar fluxes

using Eq. 5.64:  ∑
µn,k>0

wn
|µn,k|
∆k


 ∑
k=x,y,z

[
2φ

[0]
~i

+ 4

ik−1∑
l=1

(−1)lφ
[0]
~i−lêk

]
+

 ∑
µn,k<0

wn
|µn,k|
∆k


 ∑
k=x,y,z

[
2φ

[0]
~i

+ 4

Ik−ik∑
l=1

(−1)lφ
[0]
~i−lêk

]
= 4π

 ∑
k=x,y,z

 ∑
µn,k>0

wn
|µn,k|
∆k

[
2(−1)ikψ

n,[0]
1/2

]
−

 ∑
µn,k<0

wn
|µn,k|
∆k

[
2(−1)ik−Ik−1ψ

n,[0]
Ik+1/2êk

]
 . (5.89)
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Using definition Eq. 5.78 and its properties, Eq. 5.81, we can manipulate Eq. 5.89 into: ∑
k=x,y,z

[
φ

[0]
~i

+

ik−1∑
l=1

(−1)lφ
[0]
~i−lêk

−
Ik−ik∑
l=1

(−1)lφ
[0]
~i−lêk

]
=

2π

ρ

 ∑
k=x,y,z

 ∑
µn,k>0

wn
|µn,k|
∆k

[
2(−1)ikψ

n,[0]
1/2

]
−

 ∑
µn,k<0

wn
|µn,k|
∆k

[
2(−1)ik−Ik−1ψ

n,[0]
Ik+1/2êk

]
 . (5.90)
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Figure 5.48: Sparsity pattern plot of the DD B matrix. The matrix has full rank.

From Eq. 5.90 we can construct the B matrix for the DD method. A sparsity pattern

plot of the B matrix for the DD method is presented in Fig 5.48 for the case of 43 cells. The

dimension of the B matrix is 64 × 64 and it is full rank. Therefore, we conclude that the DD

method does not possess the thick diffusion limit in contrast to slab geometry, where it does
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possess the thick diffusion limit. A listing of the Mathematica notebook to create the DD B

matrix can be found in Appendix E.2.

Analysis of the AHOTN-1 Method

The AHOTN-1 WDD relations along direction k = x, y, z are given by:

1 + αn,k
2

ψn~i+1/2êk, ~mk
+

1− αn,k
2

ψn~i−1/2êk, ~mk
= ψn~i,~bk

+ 3αn,kψ
n
~i,~gk

, (5.91)

where ~bk is given by:

~bk =


(0,my,mz)

T if k = x

(mx, 0,mz)
T if k = y

(mx,my, 0)T if k = z.

(5.92)

Noting that the spatial weights, αn,k, asymptotically behave like:

αn,k = sgn (µk,n) [1 + O (ε)] , (5.93)

the AHOTN-1 WDD relations for the leading order angular face and volume moments can be

derived to be:

µk,n > 0 : ψ
n,[0]
~i+1/2êk, ~mk

= ψ
n,[0]
~i,~bk

+ 3ψ
n,[0]
~i,~gk

µk,n < 0 : ψ
n,[0]
~i−1/2êk, ~mk

= ψ
n,[0]
~i,~bk
− 3ψ

n,[0]
~i,~gk

. (5.94)

Adding/Subtracting the WDD relation for the upstream cell gives:

µk,n > 0 : ψ
n,[0]
~i+1/2êk, ~mk

± ψn,[0]
~i−1/2êk, ~mk

=
(
ψ
n,[0]
~i,~bk
± ψn,[0]

~i−êk,~bk

)
+ 3

(
ψ
n,[0]
~i,~gk
± ψn,[0]

~i−êk,~gk

)
µk,n < 0 : ψ

n,[0]
~i−1/2êk, ~mk

± ψn,[0]
~i+1/2êk, ~mk

=
(
ψ
n,[0]
~i,~bk
± ψn,[0]

~i+êk,~bk

)
− 3

(
ψ
n,[0]
~i,~gk
± ψn,[0]

~i+êk,~gk

)
(5.95)
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Now Eq. 5.95 is substituted into Eq. 5.66:

∑
k:mk even

 ∑
µn,k>0

wn
|µn,k|
∆k

[(
ψ
n,[0]
~i,~bk
− ψn,[0]

~i−êk,~bk

)
+ 3

(
ψ
n,[0]
~i,~gk
− ψn,[0]

~i−êk,~gk

)]

+
∑

µn,k<0

wn
|µn,k|
∆k

[(
ψ
n,[0]
~i,~bk
− ψn,[0]

~i+êk,~bk

)
− 3

(
ψ
n,[0]
~i,~gk
− ψn,[0]

~i+êk,~gk

)]
+

∑
k:mk odd

 ∑
µn,k>0

wn
|µn,k|
∆k

[(
ψ
n,[0]
~i,~bk

+ ψ
n,[0]
~i−êk,~bk

)
+ 3

(
ψ
n,[0]
~i,~gk

+ ψ
n,[0]
~i−êk,~gk

)]

−
∑

µn,k<0

wn
|µn,k|
∆k

[(
ψ
n,[0]
~i,~bk

+ ψ
n,[0]
~i+êk,~bk

)
− 3

(
ψ
n,[0]
~i,~gk

+ ψ
n,[0]
~i+êk,~gk

)] = 0. (5.96)

As the leading order angular flux moments are isotropic, they can be replaced by the scalar

fluxes:

∑
k:mk even

[(φ[0]
~i,~bk
− φ[0]

~i−êk,~bk

)
+ 3

(
φ

[0]
~i,~gk
− φ[0]

~i−êk,~gk

)] ∑
µn,k>0

wn
|µn,k|
∆k


+

[(
φ

[0]
~i,~bk
− φ[0]

~i+êk,~bk

)
− 3

(
φ

[0]
~i,~gk
− φ[0]

~i+êk,~gk

)] ∑
µn,k<0

wn
|µn,k|
∆k


+

∑
k:mk odd

[(φ[0]
~i,~bk

+ φ
[0]
~i−êk,~bk

)
+ 3

(
φ

[0]
~i,~gk

+ φ
[0]
~i−êk,~gk

)] ∑
µn,k>0

wn
|µn,k|
∆k


−

[(
φ

[0]
~i,~bk

+ φ
[0]
~i+êk,~bk

)
− 3

(
φ

[0]
~i,~gk

+ φ
[0]
~i+êk,~gk

)] ∑
µn,k<0

wn
|µn,k|
∆k

 = 0. (5.97)

Now Eq. 5.78 is used and, considering property Eq. 5.81, one obtains:∑
k:mk even

ρ
{[(

φ
[0]
~i,~bk
− φ[0]

~i−êk,~bk

)
+ 3

(
φ

[0]
~i,~gk
− φ[0]

~i−êk,~gk

)]
+

[(
φ

[0]
~i,~bk
− φ[0]

~i+êk,~bk

)
− 3

(
φ

[0]
~i,~gk
− φ[0]

~i+êk,~gk

)]}
+

∑
k:mk odd

ρ
{[(

φ
[0]
~i,~bk

+ φ
[0]
~i−êk,~bk

)
+ 3

(
φ

[0]
~i,~gk

+ φ
[0]
~i−êk,~gk

)]
−

[(
φ

[0]
~i,~bk

+ φ
[0]
~i+êk,~bk

)
− 3

(
φ

[0]
~i,~gk

+ φ
[0]
~i+êk,~gk

)]}
= 0. (5.98)
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The final equation is obtained by noting that ρ can be pulled out of the summation over k:∑
k:mk even

[(
2φ

[0]
~i,~bk
− φ[0]

~i−êk,~bk
− φ[0]

~i+êk,~bk

)
+ 3

(
φ

[0]
~i+êk,~gk

− φ[0]
~i−êk,~gk

)]
+

∑
k:mk odd

[(
φ

[0]
~i−êk,~bk

− φ[0]
~i+êk,~bk

)
+ 3

(
2φ

[0]
~i,~gk

+ φ
[0]
~i−êk,~gk

+ φ
[0]
~i+êk,~gk

)]
= 0. (5.99)

Note, that Eq. 5.99 only holds for interior cells, while for boundary cells Eq. 5.66 can be

manipulated:

N∑
n=1

wn

 ∑
k=x,y,z 6=k′

µn,k
∆k

[
ψ
n,[0]
~i+1/2êk, ~mk

− (−1)mk ψ
n,[0]
~i−1/2êk, ~mk

]
+

∑
µn,k′ ·n̂>0

wn
µn,k′

∆k′

[
ψ
n,[0]
~i+1/2ê′k, ~m

k′ − (−1)mk′ ψ
n,[0]
~i−1/2ê′k, ~m

k′

]
+

∑
µn,k′ ·n̂<0

wn
µn,k′

∆k′
ψ
n,[0]
~i+1/2ê′k, ~m

k′ =
∑

µn,k′ ·n̂<0

wn
µn,k′

∆k′
(−1)mk′ ψ

n,[0]

BC,~mk′
, (5.100)

where it is assumed that ~i − 1/2ê′k is the boundary face, but equivalent expressions could be

derived otherwise. The rest of the analysis would then proceed as demonstrated before.

Equation 5.99 is now used to construct the B matrix of the AHOTN-1 method for the case

of 43 cells. The sparsity pattern is plotted in Fig. 5.49: the matrix has dimensions 512 × 512

and rank 485. Thus it has 27 redundant rows. By determining the rank for varying number

of cells I3 we find that B has (I − 1)3 redundant rows, i.e. one redundancy for each interior

vertex5. This property is referred to by Adams[7] as characterizing a full resolution method.

The AHOTN-1 method possesses the thick diffusion limit, and is a full resolution method. A

listing of the Mathematica notebook performing the said operation can be found in Appendix

E.3.

Analysis of the AHOTN-0 Method

The WDD relation for the AHOTN-0 method is:

1 + αn,k
2

ψn~i+1/2êk
+

1− αn,k
2

ψn~i−1/2êk
= ψn~i , (5.101)

5A vertex is a point (xi, yj , zk)T
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Figure 5.49: Sparsity pattern plot of the AHOTN-1 B matrix. The matrix has rank 485.

where indices indicating the spatial moment order are omitted because it is understood that all

appearing face/volume fluxes are averages. To leading order, Eq. 5.101 becomes:

ψ
n,[0]
~i+1/2êk

= ψ
n,[0]
~i

. (5.102)

In the thick diffusion limit the AHOTN-0 method looks exactly like the Step method (identical to

DGC-0, DGLA-0) and [7] already reported that the Step method does not possess the diffusion

limit. However, we shall continue as it may be instructive to complete the analysis. For positive

and negative µn,k we can derive the difference of the two opposing face fluxes in cell ~i as:

µn,k > 0 :

ψ
n,[0]
~i+1/2êk

− ψn,[0]
~i−1/2êk

= ψ
n,[0]
~i
− ψn,[0]

~i−êk
µn,k < 0 :

ψ
n,[0]
~i−1/2êk

− ψn,[0]
~i+1/2êk

= ψ
n,[0]
~i
− ψn,[0]

~i+êk
. (5.103)
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Substitution into Eq. 5.66 and separation of the sums into a positive and negative µn,k contri-

bution gives:

∑
k=x,y,z

 ∑
µn,k>0

wn
|µn,k|
∆k

(
ψ
n,[0]
~i
− ψn,[0]

~i−êk

)
+
∑

µn,k<0

wn
|µn,k|
∆k

(
ψ
n,[0]
~i
− ψn,[0]

~i+êk

) = 0. (5.104)

Using the definition of ρ and the isotropy of the leading order angular fluxes gives:

ρ
∑

k=x,y,z

(
2φ

[0]
~i
− φ[0]

~i−êk
− φ[0]

~i+êk

)
= 0. (5.105)

Equation 5.105 defines a B matrix that is well known from discretization of the negative Lapla-

cian operator using a central difference. The resulting equation is not rank deficient and there-

fore AHOTN-0 cannot have the thick diffusion limit.

Analysis of the LN and LL Methods

The analysis of the LN and LL methods shall start with looking at the asymptotic limit of the

WDD relations. It will be shown that LL and LN, which only differ in the WDD relations, are

equivalent in the thick diffusion limit. The WDD may be stated as follows:

LN :
1 + αn,0

2
ψ̄n~i+1/2êk

+
1− αn,0

2
ψ̄n~i−1/2êk

= ψ̄n~i + 3sµn,k |αn,0|ψ
n
~i,êk

1 + αn,1
2

ψn~i+1/2êk,mk
+

1− αn,0
2

ψn~i−1/2êk,mk
= ψn~i,~m

LL :
1 + αn,0

2
ψ̄n~i+1/2êk

+
1− αn,0

2
ψ̄n~i−1/2êk

= ψ̄n~i + 3sµn,k |αn,0|ψ
n
~i,êk

1 + αn,1
2

ψn~i+1/2êk,mk
+

1− αn,0
2

ψn~i−1/2êk,mk
= ψn~i,~m + O (ε) , (5.106)

where ψ̄ indicates the face/volume average. The first (i.e. the average) LL and LN WDD

equations are identical, while the two first order moment equations differ by a term that is

O (ε).

The ε multiplying the second summand in Eq. 5.106 originates from the inverse of the

optical thickness in its scaled version:

tn,k =
σt∆k

µn,kε
. (5.107)
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Using the asymptotic limits of the weights αn,0 and αn,1:

αn,l = sgn (µk,n) [1 + O (ε)] for l = 0, 1, (5.108)

the WDD relations of the LL and LN methods are identical to leading order and can be stated

as:

ψ̄
n,[0]
~i±1/2êk

= ψ̄
n,[0]
~i
± 3ψn~i,êk

ψ
n,[0]
~i±1/2êk,mk

= ψ
n,[0]
~i,~m

, (5.109)

where ± → + if µn,k > 0 and ± → − if µn,k < 0.

For the sake of clarity, the derivation of the B matrix entries originating from the balance

equation ~m = (0, 0, 0)T and first moment equations ~m = êk starting all from Eq. 5.66 is dis-

cussed separated. This results from the WDD relations, which differ significantly in form for

the face averages and face moments.

Balance Equation:

The leading order balance equation can be written as:

∑
k=x,y,z

N∑
n=1

wn
µn,k
∆k

(
ψ̄
n,[0]
~i+1/2êk

− ψ̄n,[0]
~i−1/2êk

)
= 0, (5.110)

and the sum over angles n can furthermore be split into two parts:

∑
k=x,y,z

∑
µn,k>0

wn
|µn,k|
∆k

(
ψ̄
n,[0]
~i+1/2êk

− ψ̄n,[0]
~i−1/2êk

)
+

∑
k=x,y,z

∑
µn,k<0

wn
|µn,k|
∆k

(
ψ̄
n,[0]
~i−1/2êk

− ψ̄n,[0]
~i+1/2êk

)
= 0 (5.111)

The WDD equation for the face averages, Eq. 5.109, and the corresponding equation for the

upstream cell are now used to obtain:

ψ̄
n,[0]
~i±1/2êk

− ψ̄n,[0]
~i∓1/2êk

=
(
ψ̄
n,[0]
~i
− ψ̄n,[0]

~i∓êk

)
± 3

(
ψ
n,[0]
~i,êk
− ψn,[0]

~i∓êk,êk

)
. (5.112)
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Substitution of Eq. 5.112 into Eq. 5.111 gives:

∑
k=x,y,z

∑
µn,k>0

wn
|µn,k|
∆k

[(
ψ̄
n,[0]
~i
− ψ̄n,[0]

~i−êk

)
+ 3

(
ψ
n,[0]
~i,êk
− ψn,[0]

~i−êk,êk

)]
+

∑
k=x,y,z

∑
µn,k<0

wn
|µn,k|
∆k

[(
ψ̄
n,[0]
~i
− ψ̄n,[0]

~i+êk

)
− 3

(
ψ
n,[0]
~i,êk
− ψn,[0]

~i+êk,êk

)]
= 0. (5.113)

Since the leading order volume fluxes are isotropic, the angular flux moments can be replaced

by scalar flux moments: ∑
µn,k>0

wn
|µn,k|
∆k

 ∑
k=x,y,z

(
φ̄

[0]
~i
− φ̄[0]

~i−êk

)
+ 3

(
φ

[0]
~i,êk
− φ[0]

~i−êk,êk

)
+

 ∑
µn,k<0

wn
|µn,k|
∆k

 ∑
k=x,y,z

(
φ̄

[0]
~i
− φ̄[0]

~i+êk

)
− 3

(
φ

[0]
~i,êk
− φ[0]

~i+êk,êk

) = 0. (5.114)

Using the definition of ρk, Eq. 5.78, and its independence from k for the particular case

considered, Eq. 5.81, Eq. 5.114 is rewritten as:∑
k=x,y,z

[(
2φ̄

[0]
~i
− φ̄[0]

~i−êk
− φ̄[0]

~i+êk

)
+ 3

(
φ

[0]
~i+êk,êk

− φ[0]
~i−êk,êk

)]
= 0. (5.115)

From expression Eq. 5.115, all rows of matrix B can be constructed that correspond to

~m = (0, 0, 0)T .

First Order Moment Equation:

The first order moment equations up to leading order for ~m = êk are given by:

∑
l:l 6=k

 ∑
µn,l>0

wn
|µn,l|
∆l

(
ψ
n,[0]
~i+1/2êl, ~mk

− ψn,[0]
~i−1/2êl, ~mk

)

+
∑
µn,l<0

wn
|µn,l|
∆l

(
ψ
n,[0]
~i−1/2êl, ~mk

− ψn,[0]
~i+1/2êl, ~mk

)
+

∑
µn,k>0

wn
|µn,k|
∆k

(
ψ̄
n,[0]
~i+1/2êk

+ ψ̄
n,[0]
~i−1/2êk

)
−

∑
µn,k<0

wn
|µn,k|
∆k

(
ψ̄
n,[0]
~i−1/2êk

+ ψ̄
n,[0]
~i+1/2êk

)
= 0. (5.116)
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For replacing the face fluxes in Eq. 5.116 with volume fluxes, Eqs. 5.109 applied for cell ~i and

the corresponding upstream cell are used:

ψ
n,[0]
~i±1/2êl, ~mk

− ψn,[0]
~i∓1/2êl, ~mk

= ψ
n,[0]
~i,~m
− ψn,[0]

~i∓êl, ~m

ψ̄
n,[0]
~i±1/2êk

+ ψ̄
n,[0]
~i∓1/2êk

=
(
ψ̄
n,[0]
~i

+ ψ̄
n,[0]
~i∓êk

)
± 3

(
ψ
n,[0]
~i,êk

+ ψ
n,[0]
~i∓êk,êk

)
, (5.117)

where the sign convention is identical to the one introduced in Eq. 5.109. Substituting Eq.

5.117 into Eq. 5.116 then yields:

∑
l:l 6=k

 ∑
µn,l>0

wn
|µn,l|
∆l

(
ψ
n,[0]
~i,~m
− ψn,[0]

~i−êl, ~m

)

+
∑
µn,l<0

wn
|µn,l|
∆l

(
ψ
n,[0]
~i,~mk
− ψn,[0]

~i+êl, ~mk

)
+

∑
µn,k>0

wn
|µn,k|
∆k

[(
ψ̄
n,[0]
~i

+ ψ̄
n,[0]
~i−êk

)
+ 3

(
ψ
n,[0]
~i,êk

+ ψ
n,[0]
~i−êk,êk

)]
−

∑
µn,k<0

wn
|µn,k|
∆k

[(
ψ̄
n,[0]
~i

+ ψ̄
n,[0]
~i+êk

)
− 3

(
ψ
n,[0]
~i,êk

+ ψ
n,[0]
~i+êk,êk

)]
= 0. (5.118)

Now the leading order angular flux moments are replaced by scalar flux moments, which can

be pulled out of the summation over angular direction; then the summation over angles is

performed using the definition of ρk = ρ. Noting that ρ for the considered case is independent

of k the, it can be canceled and the final expression for Eq. 5.119 becomes:∑
l:l 6=k

(
2φ

[0]
~i,~m
− φ[0]

~i+êl, ~m
− φ[0]

~i−êl, ~m

)
+

[(
φ̄

[0]
~i−êk

− φ̄[0]
~i+êk

)
+ 3

(
2φ

[0]
~i,~m

+ φ
[0]
~i−êk, ~m

+ φ
[0]
~i+êk, ~m

)]
= 0. (5.119)

From Eq. 5.115 and 5.119, the B matrix for the LL/LN method can be constructed. Again,

the test case features 43 spatial cells and the matrix B is of size 256×256. The sparsity pattern

is depicted in Fig. 5.50 and the Mathematica notebook that constructs B is listed in Appendix

E.4. The matrix has has full rank for the LL/LN method such that LL/LN are concluded to

not have the thick diffusion limit.

5.3.3 Numerical Experiments using Thick Diffusion Limit Test Case

The test problem described in section 3.6 is used to determine, by numerical experiment,

whether the set of numerical methods considered within this work possess the thick diffusion
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Figure 5.50: Sparsity pattern plot of the LL/LN B matrix. The matrix has full rank.

limit. The numerical experiment proceeds by solving the transport problem on a homogeneous

cube with cross sections and uniform source:

σt =
1

ε

σs =
1

ε
− ε

Q = ε. (5.120)

for ε = 0.1l, l = 1, 2, ..., 5. Vacuum boundary conditions are applied for the transport solution

on all inflow boundaries. For all levels of ε, the same mesh spacing along all coordinate axes

is used: ∆x = ∆y = ∆z = 1/25 cm, and the physical domain thickness is fixed at 1 cm.

The solution is obtained using the GMRES method described in section 1.2.3 instead of using

the source iteration described in 1.2.2 because of the faster iterative convergence when the

scattering ratio approaches unity. The source iteration’s spectral radius in an infinite medium

is the scattering ratio: c = 1 − ε2. GMRES converges faster than SI for the presented test

problem, but still suffers from an increase in iteration count. The iterations are stopped when
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the residual norm reduces by a factor of 1.0× 10−12.

The reference solution for ε → 0 is obtained by solving Eq. 3.52 using a simple finite

difference solver for the Diffusion problem. In order to ensure accuracy of the numerical solution

of Eq. 3.52, the solution was obtained on a mesh featuring 125 mesh cells per dimensions.

With decreasing ε, a method that possesses the diffusion limit will approach the reference

solution from above and converge towards it. A method that does not possess the thick diffusion

limit will produce a solution that converges to zero as ε→ 0. An early indicator that a method

does not have the thick diffusion limit is that its scalar flux falls below the reference diffusion

solution.
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Figure 5.51: Results for thick diffusion limit numerical experiment for the LL and LN method.
Neither of these two discretization methods has the thick diffusion limit.

In Figs. 5.51 through 5.55 results for the thick diffusion limit test problem for LL and

LN, AHOTN, HODD, DGLA and DGC are presented, respectively. The numerical results

corroborate the conclusions made for those methods whose analysis is performed in [7] or

within this work:

• DGC-0,1 and DGLA-0 do not have the diffusion limit.

• AHOTN-1and DGLA-1 have the diffusion limit.

• AHOTN-0, HODD-0, HODD-1, LL and LN do not possess the diffusion limit.
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In addition, numerical results are obtained for higher-order methods for which analysis is

not available. The AHOTN and DGLA methods possess the thick diffusion limit for all orders

Λ > 0, while none of the other methods possesses the thick diffusion limit. Note, that no results

are presented for the SCB method, because from [7] it is known that it does feature the thick

diffusion limit. As a corollary of the lack of the diffusion limit for both the AHOTN-0 and the

Step method the SCT-Step method is concluded to not possess a diffusion limit.
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Figure 5.52: Results for thick diffusion limit numerical experiment for AHOTN of orders zero
through three. Except for AHOTN-0, all other methods possess the diffusion limit.
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Figure 5.53: Results for thick diffusion limit numerical experiment for HODD of orders zero
through three. Clearly HODD-0,1,2 do not possess the thick diffusion limit, but for HODD-3
ε, could not be decreased far enough to make a definite conclusions.
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Figure 5.54: Results for thick diffusion limit numerical experiment for DGLA of orders zero
through three. Except for DGLA-0 (Step method), all DGLA methods feature the thick diffusion
limit.
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Figure 5.55: Results for thick diffusion limit numerical experiment for DGC of orders zero
through three. None of the DGC orders possesses the thick diffusion limit.
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5.4 Summary of the Numerical Results

Within chapter 5, numerical results were presented for ranking the properties of the contending

spatial discretization methods: AHOTN, DGLA, DGC, and HODD of orders Λ = 0, .., 3; and

SCB, LL and LN (all of order Λ = 1). In addition, the properties of the new SCT-Step method

were investigated. First, accuracy and efficiency were tested based on the MMS test problem

described in section 3.2. Second, the resilience of the contending methods against the occur-

rence of negative angular flux face-averaged and negative scalar flux volume-averaged fluxes

was investigated based on Lathrop’s test problem, introduced within this work in section 3.4.

Finally, analysis motivated by Ref. [7] was performed and supporting numerical experiments

based on the test problem described in section 3.4 were conducted to determine the methods

that possess the thick diffusive limit.

This section shall summarize the findings of the preceding sections and organize them for

the reader in a convenient fashion. In Table 5.5 the efficiency/accuracy results are summarized

for the two solution-smoothness classes encountered in applications, namely C0 and C1. The

utilized symbols have the following meaning:

• ⊕: Best performer/performs much better than other methods.

• +: Good performance, applicable

• �: Fair performance/other methods are superior but no detrimental failure.

• −: Poor performance, application not recommended.

• 	: Catastrophic failure precludes method’s application.

Further, in Table 5.6, results from Lathrop’s test problems for determining resilience of the

discretization methods against negative fluxes are summarized. Finally, in Table 5.7, results

from section 5.3 pertaining to the thick diffusion limit are summarized.
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Table 5.5: Summary of the efficiency/accuracy results obtained within this work using the MMS
suite for various discretization methods.

Efficiency/Accuracy

C0 Smoothness C1 Smoothness

Lp L∞ Integral Lp
1 Integral

AHOTN-1 − 	 � � �
AHOTN-2 − 	 � + �
AHOTN-3 − 	 � ⊕ �

DD − 	 − − −
HODD-1 − 	 − − −
HODD-2 − 	 − − −
HODD-3 − 	 − − −

DGLA-1 − 	 � − �
DGLA-2 − 	 � + �
DGLA-3 − 	 � ⊕ �

DGC-1 − 	 � � �
DGC-2 − 	 � + �
DGC-3 − 	 � ⊕ �

LL − 	 + � +
LN − 	 + � +

SCB − 	 − − −
SCT-Step ⊕ ⊕ − − −

1 Includes p = 1, 2,∞
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Table 5.6: Summary of the resilience against negative fluxes for various discretization methods
determined in this work using Lathrop’s test problem.

Resilience against negative fluxes

τwψ τwφ

AHOTN-0 � +
AHOTN-1 − −
AHOTN-2 + +
AHOTN-3 − −

HODD-0 	 	
HODD-1 − −
HODD-2 − −
HODD-3 − −

DGLA-0 ⊕ ⊕
DGLA-1 − −
DGLA-2 + +
DGLA-3 − −

DGC-1 − −
DGC-2 + +
DGC-3 − −

LL − −
LN − −

SCB ⊕ ⊕
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Table 5.7: Synopsis of the analysis and numerical experiments related to the possession of the
thick diffusion limit. For the SCT-Step method the results are marked as extrapolated because
neither of the basic discretization methods possesses the diffusion limit.

Method Order Analysis Numerical Results

DGLA

0 no[7] no
1 yes[7] yes
2 n.a. yes
3 n.a. yes

DGC

0 no[7] no
1 no[7] no
2 n.a. no
3 n.a. no

SCB 1 yes[7] n.A.

HODD

0 no no
1 no no
2 n.a. no
3 n.a. no

AHOTN

0 no no
1 yes yes
2 n.a. yes
3 n.a. yes

LL 1 no no
LN 1 no no

SCT-Step 0 no (extr.) no(extr.)
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Chapter 6

Development of a Quantitative

Decision Metric

This chapter is dedicated to the development of a quantitative decision metric that is based

on the data obtained from the MMS test problem described in 3.2 and Lathrop’s test problem

described in 3.4. This is followed by a validation exercise for the resulting metric that is derived

from the one energy group NEA box-in-box benchmark problem described in [67] and [68]. The

approach taken in this chapter is to first predict the contending methods’ performance utilizing

the developed decision metric and the data obtained in chapter 5, then to use the contending

methods to solve selected cases adapted from the NEA box-in-box benchmark suite. The

validation is then completed by comparing the predicted and computed decision metric’s results.

It should be stressed that the computed values of the decision metric are only meaningful

in relation to the values associated with other contending methods, i.e. relative to one another.

The thick diffusion limit property shall be excluded from the presented validation exercise

because the selected NEA box-in-box suite does not include any challenge relating to the thick

diffusive regime. However, we will present some ideas on how to add the diffusion limit property

to the decision metric, if desired.

Within this chapter, the NEA box-in-box benchmark suite is described in section 6.1, sub-

sequently the decision metric is developed in section 6.2, and finally the decision metric is

exercised and validated in section 6.3.

6.1 NEA Box-In-Box Benchmark Suite

The single energy group NEA box-in-box benchmark problem is depicted in Fig. 6.1. It consists

of a box of dimensions 1×1×L cm completely enclosing a smaller box of dimension γ×γ×γL
cm. The volume inside the smaller box is referred to as region II, while the volume inside the
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Figure 6.1: Schematic of the NEA box-in-box benchmark suite. Image courtesy of Y. Azmy[67].

enclosing box but outside the smaller box is referred to as region I. The geometric and material

properties of regions I and II are allowed to differ independently.

The length L controls the height of the spatial domain and since the domain’s size in the x

and y direction is constant, it also controls the domain’s aspect ratio. The second parameter, γ,

controls the size of region II compared to the size of region I. Finally, for each region, the total

cross section and scattering ratio can be varied independently. Thus, six parameters can be

varied independently of one another, which creates a suite of benchmark problems rather than

a single test problem. In [67], 729 variations of the box-in-box suite are considered, created by

all possible combinations of the parameter values listed in Table 6.1.

The flux in the box-in-box suite is driven by a source located in a box ranging from ~r =

(0, 0, 0)T to ~r = ((1− γ)/2, (1− γ)/2, L(1− γ)/2): the box is completely encompassed in region

I and extends from the origin to the lower left corner of the smaller box defining region II. The

211



www.manaraa.com

Table 6.1: Parameter variations of NEA box-in-box benchmark suite utilized in [67].

Parameter Range

L 0.1 1.0 5.0
γ 0.1 0.5 0.9
σt,I 0.1 1.0 5.0

cI 0.5 0.8 1.0
σt,II 0.1 1.0 5.0

cII 0.5 0.8 1.0

source is spatially uniform and satisfies the normalization condition:∫ (1−γ)/2

0
dx

∫ (1−γ)/2

0
dy

∫ L(1−γ)/2)

0
dz S (~r) =

S̄L(1− γ)3

8
= 1, (6.1)

where S̄ is the average source within the defined source volume.

The NEA box-in-box benchmark suite is designed to test the accuracy of integral quantities

computed by participating discretization methods[67]. These integral quantities can be divided

into three categories: (1) the average scalar fluxes in regions I and II, (2) currents over several

surfaces in the suite domain, and (3) finally average scalar fluxes over several subvolumes in the

domain. The NEA box-in-box benchmark suite is an excellent benchmark problem to examine

the performance of the decision metric over a range in parameter space and not just a single

benchmark configuration.

Within this work, only quantity types one and three are considered, while currents are

excluded from the discussion. The reason for this omission is that the MMS test suite was used

to obtain discretization errors only related to angular and scalar fluxes because of the limitation

of quantities that the MMS3D code can compute. This data is instrumental for the prediction

of the method’s accuracy and efficiency in the framework of the decision metric. Therefore,

predictions of errors associated with currents cannot be made because the necessary data is not

readily available. However, this is not a fundamental limitation of our approach and may well

constitute future research.

Further, both considered types of quantities, the region and subvolume average fluxes, are

integral quantities and their accuracy is therefore naturally measured in an integral error norm.

The NEA box-in-box benchmark suite does not provide an analytical or mesh-cell wise reference

solution as the MMS test suite does, because, in contrast to the MMS test problem, these are

unknown and virtually impossible to obtain. Therefore, the validation of the performance

metric will be restricted to accuracy in computing integral quantities. In many ways, this
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reflects the typical interest of radiation transport code practitioners, e.g. in reactor design

where pin-averaged fission rates are desired. A total of 15 integral (average) target quantities

listed in Table 6.2 are computed when solving each considered instance of the NEA benchmark

suite.

Table 6.2: Target subvolumes for which averaged scalar fluxes are computed the framework of
the NEA box-in-box suite.

Quantity ID Lower left corner Upper right corner

1.a Region I
1.b Region II

3.a
(

1−γ
4 , 1−γ

4 , L1−γ
4

)T (
1−γ

2 , 1−γ
2 , L1−γ

2

)T
3.b

(
1−γ

2 , 1−γ
2 , L1−γ

2

)T (
1
2 ,

1
2 ,

L
2

)T
3.c

(
1
2 ,

1
2 ,

L
2

)T (
1+γ

2 , 1+γ
2 , L1+γ

2

)T
3.d

(
1+γ

2 , 1+γ
2 , L1+γ

2

)T (
3+γ

4 , 3+γ
4 , L3+γ

4

)T
3.e

(
3+γ

4 , 0, 0
)T (

1, 1−γ
4 , L1−γ

4

)T
3.f

(
3+γ

4 , 3+γ
4 , 0

)T (
1, 1, L1−γ

4

)T
3.g

(
0, 0, L3+γ

4

)T (
1−γ

4 , 1−γ
4 , L

)T
3.h

(
3+γ

4 , 0, L3+γ
4

)T (
1, 1−γ

4 , L
)T

3.i
(

3+γ
4 , 3+γ

4 , L3+γ
4

)T
(1, 1, L)T

3.j
(

1
2 ,

1−γ
2 , L1−γ

2

)T (
1+γ

2 , 1
2 ,

L
2

)T
3.k

(
1
2 ,

1
2 , L

1−γ
2

)T (
1+γ

2 , 1+γ
2 , L2

)T
3.l

(
1−γ

2 , 1−γ
2 , L2

)T (
1
2 ,

1
2 , L

1+γ
2

)T
3.m

(
1
2 ,

1−γ
2 , L2

)T (
1+γ

2 , 1
2 , L

1+γ
2

)T

Reference solutions for the box-in-box test problem were obtained by two means: fine mesh

TORT[65] and MCNP reference solutions[68]. Thus, the discretization error in the problem

posed by Azmy consists of the spatial discretization error and the angular discretization er-

ror. The Monte-Carlo MCNP solution only comprises statistical uncertainty and beyond this
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limitation is free of error, while TORT solutions comprise a discretization error that encom-

passes some contribution from the angular quadrature and some spatial discretization error.

For comparison of spatial discretization methods, the angular discretization error is an un-

wanted artifact because it contaminates the quantity of interest for our purposes: the spatial

discretization error.

However, the error from the angular quadrature is important beyond being just an annoyance

for the applicability of the decision metric. Consider an error norm applied to the numerically

computed scalar flux, φh,N :

‖ε‖ = ‖φh,N − φ‖, (6.2)

where φ is the exact scalar flux. Now, consider the scalar flux φN , which comprises only an

angular discretization error. It can, for example, be obtained by letting h→ 0 while fixing the

angular quadrature. Then Eq. 6.2 can be written as:

‖ε‖ = ‖(φN − φ) + (φh,N − φN )‖ ≤ ‖φN − φ‖+ ‖φh,N − φN‖. (6.3)

The first summand in Eq. 6.3 is the angular discretization error, while the second summand

is the spatial discretization error. In order to obtain the correct solution ‖ε‖ → 0 both the

spatial mesh and angular quadrature need to be refined. In case only the spatial mesh is refined

the angular discretization error will dominate the total discretization error and, at least from

the solution accuracy perspective, it is inconsequential which spatial discretization method is

utilized.

The discussion of the decision metric that will be introduced in section 6.2 is based on the

assumption that the spatial discretization error is much larger than the angular discretization

error. It will briefly be discussed how the decision metric can still be of utility if the angular

discretization error dominates the spatial discretization error. However, for the remainder of

the discussion, it shall be assumed that the spatial discretization error dominates the angular

discretization error.

The reference solution employed to quantify the spatial discretization error must reflect

the necessity of a dominating spatial discretization error. Two options are available to enable

realizing this objective: First, a quadrature that is accurate enough could be chosen for the SN

runs, and the MCNP solutions could be used as reference solutions; or second, an SN solution

that is spatially converged for a fixed angular quadrature is used as reference solution and all

contending methods’ solutions share that same quadrature. Then in Eq. 6.3 φ← φN and

‖ε‖ = ‖φh,N − φN‖.

Within this work, the second option is utilized, because level symmetric quadratures that
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are sufficiently fine to observe the first option would prolong execution times to impractical

levels. In fact, the level-symmetric quadrature might not even be convergent for the NEA

box-in-box test problem. The more accurate Legendre-Chebychev quadrature would provide

more rapidly converging results, but these were not readily available in the research codes used

within this work.

Instead of using TORT computed reference solutions, the AHOTN-1 code used throughout

this work is utilized for generating the reference solutions. The reason for this is that the

discretization error of several contending methods will be smaller than the TORT reference

solutions on fine meshes. This results from the higher expansion order and quality of approx-

imation used by AHOTN-1 compared to the TORT code. In addition, tight stopping criteria

of 1.0 × 10−10 have to be set to avoid contamination of the reference solutions with iterative

convergence error. Therefore, TORT references created within [68] cannot be used for this

work.

The method used for creating high-fidelity reference solutions employed within this work is

using AHOTN-1 for a set of five meshes featuring up to 2563 mesh cells. The finest mesh from

the corresponding validation exercise runs will be at least a factor of four coarser. In addition,

Richardson extrapolation[69] is used to improve the accuracy of the reference solution. For the

described case, Richardson extrapolation takes the following form:

0. Mesh spacing values: hj , j = 1, ...5

1. Computed region averages: φ̄j , j = 1, ...5

2. Compute errors: ej =
∣∣φ̄j − φ̄5

∣∣ , j = 1, ..., 4

3. Least-squares fit of {hj , ej}j=1,...,4 to e(h) = Chp ⇒ log(e) = log(C) + p log(h)

4. Richardson extrapolation: φ̄R =
2pφ̄5 − φ̄4

2p − 1
, (6.4)

where φ̄R is the Richardson extrapolate that is used as reference value for the corresponding

benchmark quantity.

The final limitation of the NEA box-in-box benchmark suite is that it only allows for C1

smoothness while the discussion of accuracy and efficiency in chapter 5 also presented results

for discontinuous solutions of C0 problems. For the latter class of problems, no validation will

be performed in this work because of the limitation of the validation exercise. In addition, the

SCT-Step method is removed from the list of contending methods due to its poor performance

for problems featuring C1 smoothness.
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6.2 Development and Implementation of Decision Metric

The utility of the developed decision metric is to guide the practitioner’s choice of which spatial

discretization method to select for a specific application. As pointed out in chapter 1, various

requirements may exist, and their relative importance can drastically vary. The basic assump-

tion that the decision metric relies on is that performance indicators collected from simple test

problems that may be archived in a data base can be used to predict a method’s performance

for different, more complicated problems.

The decision metric assigns a score to a method’s expected performance that distinguishes

its performance with respect to alternate methods. However, a single value of that score by

itself does not have significant meaning because it does not relate to any observable quantity,

e.g. solution accuracy. In that regard, the decision metric score is similar to the FOM employed

in Monte-Carlo Methods[62]. In contrast to the Monte-Carlo FOM, the decision metric’s score

will be normalized such that it always varies in-between 0 and 1, where 0 is the lowest value

(failure) and 1 is a perfect score.

The general form of the decision metric’s score chosen within this work is a generalized

geometric mean of scores, each associated with a single property that the practitioner deems

important:

Γ =

(∏
p

Γ
βp
p

) 1
P∑
p=1

βp

. (6.5)

In Eq. 6.5, p stands for accuracy, execution time, efficiency (FOM as in Eq. 5.6), or positivity

(e.g. measured by τwψ ) within this work. However, it is not limited to these properties of the

employed numerical method. Possession of a thick diffusion limit could be incorporated with

a score Γp that is either 0 or 1 for methods that possess or do not possess the thick diffusion

limit if possession of the thick diffusion limit is an essential requirement. The same approach

could be taken to enforce positive definiteness and/or cell-wise convergence for non-smooth C0

problems. In addition, properties that are not discussed within this work but listed in chapter

1 can be added with little effort if a norm is chosen to quantify them and performance data

from test cases are available.

The exponents βp in Eq. 6.5 are interpreted as weights set by the user to control the

importance of the several properties that are aggregated into the final score, Γ. The higher the

value of βp, the higher the importance of the single property p, as measured by its contribution

to the total score Γ. The standard geometric mean is obtained for βp = 1, p = 1, ..., P .

In order to enforce Γ to vary between 0 and 1, each of the individual scores is required to also

vary between 0 and 1. Further, all quantities considered within this work, such as discretization

error, τwψ and execution time, vary by orders of magnitude when the mesh is refined. Under
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these circumstances, two pathological situations may arise: (1) Γp may vary abruptly by orders

of magnitude for different refinement levels and (2) a single Γp′ may completely dominate all

other Γp if it is much smaller/larger; thus a single property p′ dominates the decision metric

score that is designed to be an aggregation of scores. As these scenarios are undesirable for the

anticipated objectives of the decision metric, a logarithmic scale is used to assign a score Γp to

the quantities of interest.

For the four properties of interest: execution time T , error norm ‖ε‖, FOM and τwψ the

corresponding Γp are given by

ΓT =
log
(

T
Tmax

)
log
(
Tmin
Tmax

)
Γ‖ε‖ =

log
(
‖ε‖
‖ε‖max

)
log
(
‖ε‖min
‖ε‖max

)
ΓFOM =

log
(

FOM
FOMmin

)
log
(

FOMmax
FOMmin

)
Γτwψ =

log
(

τwψ
τwψ,min

)
log
(
τwψ,max
τwψ,min

) , (6.6)

where the max and min subscripts refer to the largest and smallest occurring value of the

respective quantity. These minimum and maximum values can also be used to set thresholds

on the acceptable/desired value of the respective quantity if we assign:

x←


xmin if x < xmin

xmax if x > xmax

x else

, (6.7)

where x stands for any of the quantities listed in Eq. 6.6. With the exception of the FOM,

xmin would then be the desired result for which a score of 1 is assigned while everything above

xmax is considered a failure and a score of 0 is assigned. For the FOM, the roles of xmin and

xmax are reversed since a higher FOM indicates a superior performance.

In Eq. 6.6, the quantities T , ‖ε‖, FOM, and τwψ all depend on the mesh spacing h, which is

defined as:

h = max
~i∈D

(∆xi,∆yj ,∆zk) . (6.8)

It is, however, more convenient to write the dependence of the said quantities on the dimen-
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sionless cell optical thickness t defined by:

t = max
~i∈D

(
σ
~i
t∆xi, σ

~i
t∆yj , σ

~i
t∆zk

)
. (6.9)

The transport equations within each cell can be cast in a form that depends solely on the cell

optical thickness and not on the physical thickness of the cell. Thus the transport process is

much better characterized in terms of the cell optical thickness t than the physical thickness h.

Evaluating the score, Γp, for the t values for which data is actually available, i.e. the base

points, is straight forward. However, within this work the decision metric score is not only

desired at base point values of t but also at intermediate points. Therefore, an interpolation

scheme has to be devised that interpolates T , ‖ε‖, FOM, and τwψ over t.

For the asymptotic dependence of the execution time, error and FOM on h and thus t it is

known that:

T ∝ h−3 → T ∝ t−3

‖ε‖ ∝ hλ → ‖ε‖ ∝ tλ

FOM ∝ h0 → FOM ∝ t0. (6.10)

For all these quantities a power interpolation of the form

x = Ctp, (6.11)

would be appropriate. For τwψ the same interpolation is used for two reasons: first τwψ changes

by orders of magnitude when the mesh is refined by a factor of two, t← t/2, which disqualifies

linear interpolation and second there is no theoretical model of how τwψ should change when the

mesh is refined. Therefore, there is no indication that any other interpolation method would

perform superior to the power interpolation Eq. 6.11.

The interpolation procedure searches the data array obtained from the MMS test problem

and Lathrop’s test problem such that tl < t < tl+1. Then it computes C and p as follows:

p =
log
(
xl+1

xl

)
log
(
tl+1

tl

)
C =

xl
tpl
, (6.12)

and finally uses Eq. 6.11 to compute the interpolated x(t). In case the value of t is outside the

218



www.manaraa.com

range of the data array, an extrapolation is performed by selecting:

l =

{
1 if t < tmin

lmax − 1 if t > tmax
. (6.13)

6.3 Validation of Decision Metric’s Prediction

This section exercises the decision metric to predict which methods will perform well for in-

dividual cases adapted from among the NEA box-in-box test suite. To this end, a predicted

score is computed for the list of contending methods described before. Then, actual solutions

computed with the exercised methods are used to compute an actual score on a relative scale.

The comparison of the predicted score and the actual score constitutes the validation exercise

presented in this section. Specifically, the question that will be answered here is how accurately

does the developed decision metric predict the performance of methods relative to one another,

given a specific set of weights βp that reflects the user’s sense of relative importance of the

included measure of solution quality for different combinations of the problem parameters L,

γ, σt, and c.

Table 6.3 lists the various combinations of parameters for setting up the NEA benchmark

suite utilized within the validation exercise. In addition, Table 6.3 lists the corresponding

MMS and Lathrop test data sets that are used to predict the performance of considered methods

applied to the NEA suite’s solution. Note, not all choices of parameters for the NEA benchmark

listed in Table 6.3 are canonical, i.e. belong to the original set of parameters specified by

Azmy[67]; see also Table 6.1. New sets of parameters are introduced to carefully match domain

optical thicknesses and scattering ratios used in the MMS and Lathrop benchmark problems.

Within this work, each set of parameters characterizing the NEA benchmark suite, referred

to as NEA-I, II, III, IV as listed in Table 6.3, is matched with a specific MMS data set and a

specific Lathrop data set. The parameters that are used for matching the NEA cases with the

MMS and Lathrop cases are the domain optical thickness tD, the domain aspect ratio κ and the

(for Lathrop only) the minimum scattering ratio cD. These quantities are defined as follows:

tD,k = max
~ik

 Ik∑
ik=1

σ
~i
t∆k


tD = max

k
tD,k

κ =
maxk tD,k
mink tD,k

cD = min
~i
c
~i. (6.14)
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In Eq. 6.14, the quantity tD,k requires some explanation. It is the longest optical distance

within the domain along each of the three coordinate axes: for example, tD,x is the longest

optical distance along the x-axis, i.e. along êx.

For a better match between the NEA benchmark and Lathrop’s test problem, two new Lath-

rop cases have been added to the ones listed in Table 3.4, namely Lathrop-IV-2 and Lathrop-V-1

with parameters that can be inferred from Table 6.3.

The relevance of the chosen test cases I through IV is as follows:

• Case I: This is an optically thin test case with a unit aspect ratio. The domain optical

thickness tD, domain aspect ratio κ and domain scattering ratio cD match well between

the data sets (MMS and Lathrop) and the NEA-I problem. However, Lathrop’s test case

L-IV-2 is a very “simple” test case because of small optical cell thicknesses and decently

large scattering ratios. Moreover, NEA-I is a homogeneous problem such that only a

single total cross section and scattering ratio exist, and therefore matching it to an MMS

and Lathrop data set of the same optical thickness and/or scattering ratio may be more

justifiable than for a heterogeneous test case.

• Case II: Comparing to NEA-I, this test case exhibits two major differences. First, NEA-

II is optically much thicker with tD = 8, and second the material properties in regions

I and II differ. Region II’s total cross section is larger than region I’s cross section

by a factor of five. Parameter set NEA-II is matched decently well to the MMS-II and

Lathrop-I-1 test cases. In particular, NEA-II tests whether the decision metric’s prediction

significantly loses accuracy if the data from homogeneous test problems is extrapolated

to non-homogeneous problems.

• Case III: In this case the optical thickness of the NEA-III domain is reduced to tD = 3

but it is still matched with MMS-II and Lathrop-I-1. In this case, however, MMS-II and

Lathrop-I-1 match tD poorly. NEA-III is designed to investigate how important a good

match of MMS/Lathrop’s tD and the corresponding NEA tD is.

• Case IV: In contrast to NEA-I through NEA-III, this parameter set features a non-unity

aspect ratio, κ = 10. The corresponding MMS and Lathrop test cases match the aspect

ratio, the domain optical thickness and the scattering ratio. This NEA parameter set

is designed to investigate if conclusions change from test cases I-III if the aspect ratio

is changed. NEA-IV is homogeneous, i.e. regions I and II feature the same material

properties.

Solutions for the NEA benchmark suite are computed with the same codes that are used for

creation of the MMS and Lathrop data sets. As the quadrature is not of concern within this

work the S4 level-symmetric quadrature is utilized throughout the entire validation exercise.
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Table 6.3: Parameter variations of NEA benchmark used in the validation exercise.

Case NEA parameters MMS match Lathrop match

I

L = 1 c2 = 0.5 Match: MMS-I Match: L-IV-2
γ = 0.5 tD = 1 tD = 1 tD = 1

σt,1 = 1 tmax = 6.25× 10−2 κ = 1 κ = 1

c1 = 0.5 tmin = 1.56× 10−2 tmax = 2.5× 10−1 tmax = 1/3

σt,2 = 1 κ = 1 tmin = 4.0× 10−3 tmin = 1.0× 10−2

c = 0.5

II

L = 1 c2 = 0.1 Match: MMS-II Match: L-I-1
γ = 0.1 tD = 8 tD = 8 tD = 12
σt,1 = 2.6̄ tmax = 0.83̄ κ = 1 κ = 1

c1 = 0.1 tmin = 0.2083̄ tmax = 2 tmax = 4

σt,2 = 13.3̄ κ = 1 tmin = 3.125× 10−2 tmin = 1.25× 10−1

c = 0.1

III

L = 1 c2 = 0.1 Match: MMS-II Match: L-I-1
γ = 0.5 tD = 3 tD = 8 tD = 12

σt,1 = 1 tmax = 1.9× 10−1 κ = 1 κ = 1

c1 = 0.5 tmin = 4.69× 10−2 tmax = 2 tmax = 4

σt,2 = 5 κ = 1 tmin = 3.125× 10−2 tmin = 1.25× 10−1

c = 0.1

IV

L = 10 c2 = 0.1 Match: MMS-VII Match: L-V-1
γ = 0.5 tD = 2 tD = 2 tD = 2
σt,1 = 0.2 tmax = 0.125 κ = 10 κ = 10

c1 = 0.1 tmin = 3.13× 10−2 tmax = 0.5 tmax = 0.6̄

σt,2 = 0.2 κ = 10 tmin = 1.56× 10−2 tmin = 0.02083̄

c = 0.1

tD: Domain optical thickness κ: Domain Aspect Ratio
tmax: Coarsest mesh opt. cell thickness tmax: Finest mesh opt. cell thickness
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Further, the iterative stopping criterion is set to 1.0 × 10−10. However, some of the target

volume’s exact averaged scalar flux is sufficiently small, i.e. < 1.0 × 10−3, such that on fine

meshes the errors are ≈ 10−8, and the computed discretization error is contaminated with

iterative stopping error. In order to ensure an accurate estimation of the discretization error only

those target volumes in Table 6.2 are considered that feature averaged scalar fluxes > 1.0×10−2.

For validation of the performance metric three different choices of weights are considered.

Let ~β =
(
β‖ε‖, βτwψ , βT , βFOM

)
, then the three considered sets of weights choices are:

~β1 = (0, 0, 0, 1)

~β2 = (1, 0, 1, 0)

~β3 = (0, 1, 0, 2) . (6.15)

The first two choices, ~β1 and ~β2, align in terms of the objectives of the code practitioner: The

FOM is a measure of efficiency and is used as the sole quantity to compute the methods’ score

Γ, while for ~β2 both errors and execution times are combined using unit weight for both. Thus

both ~β1 and ~β2 are scenarios in which the practitioner seeks an efficient discretization method.

In contrast choice three combines resilience against negative angular face fluxes with the FOM

with weighting factors one and two, respectively. This indicates a scenario, where the user is

mostly interested in an efficient methods. A certain level of negative fluxes is acceptable within

this scenario but the user is interested in a small measure of negative fluxes.

For a concise presentation of the validation exercise’s results a penalty function is defined

measuring how well the predictions match the actual best-to-worst performance rankings. Let

Γ be the predicted scores and Γ̃ be the actual scores. Then, for each level of mesh optical

thickness separately, a ranking ordered from best performer to worst performer can be inferred

from the predicted scores:

Γ (M)→ ~M = (M1,M2,M3, ....,ML−1,ML) , (6.16)

where Γ (M) is the score associated with discretization scheme M. The discretization scheme M

comprises the specification of a method and a particular order, so M could for example stand

for LL or AHOTN-3 or any of the other introduced methods of a specified order. From the

scores a ranking of performance from best to worst is inferred that is saved in the vector ~M

with M1 being the best performing discretization scheme and ML being the worst performer.

Further, the best performer according to actual scores, again separately for each level of

mesh optical thickness, is denoted by M∗, and it satisfies:

Γ̃ (M∗)→ Γ̃max. (6.17)
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The l-th penalty function is defined as the ratio of the actual score of the Ml discretization

scheme and Γ̃max:

rl =
Γ̃ (Ml)

Γ̃ (M∗)
. (6.18)

The penalty function rl is a measure of how well the prediction reproduces the best-to-worst

ranking of the actual scores. A good prediction should feature r1 = 1 and r1 > r2 > r3 > ... >

rL−1 > rL for all levels of cell optical thickness. In addition, from the discretization schemes

that received the three highest scores at least one should be within a range of 5-10% of the

best performer, i.e. rl > 0.9 for l = 1, 2, or 3. The penalty function is designed to quantify the

penalty (if any) measured by the objective ~β that the user actually incurs for using the metric’s

prediction.

The penalty functions r1, r2, r3, and rL are plotted versus the cell optical thickness for

validation cases NEA-I to NEA-IV in Figs. 6.2 to 6.5. If not stated otherwise target quantity

1.a is considered. An explicit listing of all validation results obtained in the course of this work

can be found in appendix F. The computed penalty functions presented here are based on these

findings and capture the essential information that can be inferred from them in support of our

conclusions.

For the NEA-I validation case penalty functions are depicted in Fig. 6.2. The quality of the

prediction is very good for ~β = (0, 0, 0, 1) and ~β = (1, 0, 1, 0) if target quantity 1.a is considered.

For both cases the penalty function r1 is very close to unity and for five out of the six depicted

data points it is exactly unity corresponding to correctly identifying the best performer. For the

intermediate cell optical thickness level and ~β = (0, 0, 0, 1), neither the first, second, nor third

choice is the actual best performer. The prediction metric misses that AHOTN-2 performs best

under the said circumstances. However, the possible detriment arising from this inaccurate

prediction is small considering how close r1 is to unity.

The second and third best performer are well predicted when using the ~β = (1, 0, 1, 0)

weights but for ~β = (0, 0, 0, 1) their prediction is not as good. First, the ranking of these two

discretization schemes, predicted to be LN and LL, is switched: LN is predicted to perform

better than LL but in reality it is the other way around. Second, the decision metric misses

that AHOTN-2 should be the third method of choice, and not LN.

When selecting 3.c as target quantity with weights ~β = (1, 0, 1, 0) the results resemble the

ones obtained with the same weights but for target quantity 1.a with the single difference that

for the coarsest optical thickness the predicted winner, the LD method, does not perform as well

as projected. The actual best performer for the given optical thickness is the DGC-2 methods

which is also not predicted as second or third best. However, the inaccuracy does not lead to

a detrimental choice given that LD would still have about 90% of the score that DGC-2 has.

Finally, the accuracy of the prediction for ~β = (0, 1, 0, 2) is poor. The best performer is not
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Figure 6.2: Penalty functions rl for l = 1, 2, 3, L and NEA-I test cases for all considered decision
metric’s weights ~β.

found for any of the three mesh refinement levels and the incurred performance penalty may be

up to 40 % (predicted best performer has 0.6 times the score of the actual best performer). Note

that the performance score is a logarithmic scale so 40 % amounts to a significant performance

disadvantage. The reason for the poor accuracy of the prediction is that the Lathrop-IV-2 test

case is too simple to supply reliable information regarding methods’ resilience against negative

fluxes. Even for methods with little resilience against negative fluxes and on coarse meshes it is

found that the solutions are entirely positive, which biases the performance metric’s prediction.

However, the benefit of using the suggested method as opposed to the actual worst performer

is still large: 40% penalty versus a 70% penalty. Therefore, even under worst case conditions

the decision metric does not suggest using detrimentally poor performers.

For the NEA-II validation case penalty functions are depicted in Fig. 6.3. Except for

the last case, ~β = (1, 0, 1, 0) applied on target quantity 3.c, the best performer is, in general,

not predicted correctly. For each of the weights (0, 0, 0, 1), (0, 1, 0, 2), and (1, 0, 1, 0) (1.a) the

best performer is only predicted correctly for a single level of optical thicknesses. However,
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Figure 6.3: Penalty functions rl for l = 1, 2, 3, L and NEA-II test cases for all considered decision
metric’s weights ~β.

the suggested discretization scheme never fails the best performance mark by much so it would

actually be a good candidate for deployment on the NEA-II problem with performance penalties

only about 10-15%. The predictions of the best performer for target quantity 3.c and ~β =

(1, 0, 1, 0) are very accurate.

With the exception of the (0, 1, 0, 2) weighting, the second best performer is not predicted

correctly for any of the sets of weights. The reason for this inaccuracy is that LL is over

predicted such that it becomes the runner-up discretization scheme, but in reality its scores

drop significantly on the finest considered spatial mesh (lowest cell optical thickness). As a

consequence, all r2 curves exhibit a drop for the finest utilized mesh.

Observing that ~β = (0, 0, 0, 1) often features the worst predictions, it should be pointed

out here that the FOM introduced here for spatial discretization methods of the SN methods

is only valid in the asymptotic regime, i.e. once the error decreases monotonically with mesh

refinement at a constant rate λ. This condition may not be satisfied for the NEA benchmark

results even though it is satisfied for the MMS test cases that the prediction is based on.
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Figure 6.4: Penalty functions rl for l = 1, 2, 3, L and NEA-III test cases for all considered
decision metric’s weights ~β.

For the (0, 1, 0, 2) weighting the only shortcoming of the prediction is that the best-performer

and the runner-up methods are switched with minor impact on the total score.

For the NEA-III benchmark case, penalty functions are depicted in Fig. 6.4. This bench-

mark case is intended to investigate if a mismatch of global parameters between the NEA

benchmark case and the MMS/Lathrop test cases would lead to poorer predictions than with

well-matched global parameters. From Fig. 6.4, we infer that the answer depends on the choice

of the weights.

For both ~β = (1, 0, 1, 0) weighted examples, the predictions are accurate: The best performer

is correctly identified for most of the cell optical thicknesses and for the two data points where

that is not the case the incurred penalty is less than 10%. The ranking of the second and third

best methods is reasonably accurate. For target quantity 1.a it strictly holds that r2 < r1,

while for target quantity 3.c the said condition does not strictly hold. However, the actual

scores Γ̃ (M2) and Γ̃ (M3) do not differ by much such that getting the exact order of the top

three performers incorrect is inconsequential to the objective defined by ~β = (1, 0, 1, 0).
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Figure 6.5: Penalty functions rl for l = 1, 2, 3, L and NEA-IV test cases for all considered
decision metric’s weights ~β.

For the remaining set of weights ~β = (0, 0, 0, 1) and (0, 1, 0, 2) the predictions are deficient,

because for the coarsest cell optical thickness none of the first three methods is within 20% of

the best performer. Therefore, a choice based on the decision metric would have detrimental

effects on the quality of the transport computation performed on the coarsest mesh. However,

for the two finer mesh refinement levels, the predictions are accurate enough to base a beneficial

decision on them.

Figure 6.5 depicts the penalty functions for the NEA-IV benchmark case. In general, the

predictions are accurate. With the exception of the ~β = (0, 0, 0, 1) and the ~β = (1, 0, 1, 0) (target

3.c) weighted scores, the best performer is either accurately predicted (~β = (1, 0, 1, 0)) or is so

close to the actual best performer that the incurred performance penalty is of little consequence

(~β = (0, 1, 0, 2)). Selection of the second or third best method would incur performance penalties

of about 10%.

For the ~β = (0, 0, 0, 1) scenario predictions are not as accurate. For the second mesh

refinement step for the ~β = (0, 0, 0, 1) case neither of the three top predicted methods comes
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within 15% of the true best performer. For the coarsest and finest mesh refinement steps, the

predicted runner-up and predicted best-performer turn out to be the actual best performer,

respectively, such that in these cases at least one of the top-three methods is good candidate

method for producing an efficient solution of the NEA-IV benchmark problem. However, the

prediction metric fails to make a sensible suggestion for the intermediate mesh refinement step.

Finally, for the ~β = (1, 0, 1, 0) (target 3.c) scenario, predictions are reasonably accurate

for the two coarser mesh refinement steps with the actual best performer predicted as the

third best discretization scheme. In addition, the suggested best performer is within 5-10% of

the actual best performer. However, on the finest mesh, the decision metric fails to find and

suggest a discretization scheme that comes within 15% of the actual best performer. However,

comparing to the worst performer which is about 40% worse than the best performer, shows

that the suggested methods are far from detrimental choices.

The validation exercise shows that the performance metric can be valuable as it correctly

predicts the best performer for a fairly large fraction of the validation test cases. In addition,

it never suggests any of the worst performing methods to be the most suitable, so catastrophic

predictions have not been observed in the attempted cases. For the NEA-I, ~β3 case a plausible

explanation for the poor prediction is given: the far too simple Lathrop-IV-2 test case. For the

NEA-III validation exercise the mismatch between the data sets and the NEA-III parameter is

intended to throw the prediction off so it is not surprising that the predictions are actually worst

for this example. Often, the best performer is predicted correctly, or at least the suggested dis-

cretization scheme is within 10% of the actual best performer. Under the worst circumstances,

among the first three suggestions of the decision metric is at least one that comes within 15%

of the best performer’s score.

However, the decision metric is not always absolutely right. If the stricter criterion, namely

that only the first suggestion from the decision metric is considered, is applied, performance

penalties, between suggestion and actual best-performer, up to 20% penalties are possible1.

However, these 20% are still much smaller than possible penalties that would arise from using

one of the worst performing methods: these can be up to 70%. It should be stressed that these

translate into orders of magnitude of larger solution errors or negativity measures because of

the logarithmic scale of performance scores. This underscores that even at its worst the decision

metric does not suggest using detrimentally bad performing discretization schemes.

Compared to a purely qualitative assessment of the performance, the decision metric offers

some advantage. First, if two performance aspects are combined, say positivity and efficiency,

a qualitative assessment cannot aggregate them as well a quantitative metric can. Basically,

a qualitative assessment can only look at each of the two separately and a method could be

1Excluding the NEA-I case with ~β = (0, 1, 0, 2) and the NEA-III benchmark case, where for already discussed
reason larger penalties would occur.
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picked that does well for both aspects if this method exists. In a scenario where each method

is good for one aspect but not for the other, the decision will be much harder. One could select

the method solely based on the more important performance aspect. However, this approach

neglects methods that rank say second or third for both aspects but the combined rank is better

than any of the other methods.

In order to improve the decision metric’s accuracy three approaches shall be mentioned here:

First, more data may be collected both from the existing test cases and additional benchmarks.

Second, a suitable interpolation should be devised to obtain predicted scores for problem pa-

rameters within the set of “base points”. In addition, a way should be developed to aggregate

data from different benchmarks: for example accuracy data from the MMS benchmark problem

that is combined with several other available benchmark data. Third, the target quantities

can be separated in better, more accurate categories. For example, instead of only separating

target quantities by the norm they are measured in, one could classify a region averaged flux

by its size compared to the domain size if that changes the accuracy of different discretization

methods relative to each other. Naturally, more separation of target quantities would require

to obtain more data from the test cases, hence more storage capacity.

In conclusion, the decision metric can be a useful utility over a purely qualitative assessment

of the methods’ performance. However, its predictions are not always accurate which may be

partially attributed to lack of sufficient data to utilize and/or insufficient distinction among

target quantities within this work.
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Chapter 7

Summary and Conclusions

The goal of this work is to conduct a comprehensive, quantitative comparison of a family

of spatial discretization methods referred to as nodal methods. These nodal methods are

closely related to Discontinuous Finite Element Methods, and they share a set of common

properties such as local definition of function spaces and weak cell coupling only through face

fluxes (coupling in an integral sense). Building on work in Ref. [1], the FEM framework

wrapping around most of the methods considered in this work is developed: The DGFEM

method naturally is a nodal method, the AHOTN method is shown to be a nodal method in

[1], and the HODD method is proved to be a nodal method, in particular a Discontinuous

Petrov Galerkin FEM, within this work.

The traditional derivation of the methods considered in this work are also discussed in detail:

higher-order diamond difference method (HODD), arbitrarily high-order transport method of

the nodal type (AHOTN), DGFEM methods using the Lagrange and complete function spaces

(DGLA and DGC, respectively), the simple corner balance method (SCB) and the linear nodal

(LN) and linear-linear (LL) methods.

The comprehensive comparison of the contending methods is facilitated by exercising these

methods based on three test problems each of which is designed to measure a certain aspect of

the various qualities that radiation transport code users are interested in. Within this work the

three test cases: a three-dimensional Method of Manufactured Solution test suite, Lathrop’s test

problem, and a simple cube thick diffusion test problem are used to investigate the contending

methods’ performance with respect to accuracy and execution time, resilience against negative

fluxes, and possession of the thick diffusion limit, respectively.

The MMS test problem leverages the approach of Duo[1] for creating a test problem with

escalating order of solution non-smoothness for two-dimensional Cartesian geometry for which

the exact solution is known. Within this work, Duo’s work is extended to three-dimensional

Cartesian meshes. To this end tracking, tessellation, and analytical integration routines are

230



www.manaraa.com

developed for computing cell Legendre moments of the exact angular flux, scalar flux, and

distributed source, which serves as input to the radiation transport codes that are exercised

based on the MMS test problem.

The tracking procedure determines intersection points of the Singular Characteristic Line

(SC) and Singular Planes (SP) with the mesh cells. It puts a high premium on computational

efficiency and accurate determination of the cells that are intersected by SC/SP. The tessellation

routines are wrappers around several Geompack90[52] subroutines. Finally, the integration

routines compute the exact cell Legendre moments of the angular/scalar flux and distributed

source almost to double precision (2.24 × 10−16). The MMS test suite is implemented into

the code MMS3D which allows variation of the smoothness of the exact flux solution which

is the most important property when it comes to the expected accuracy and performance of

spatial discretization methods solving the MMS test problem. For quantifying the accuracy

of the contending discretization methods error norms are defined and classified following the

description of the MMS test problem. The two most important error norms used within this

work are the L error norm and the integral error norm.

Lathrop’s test problem is used to assess the resilience of spatial discretization methods

against negative fluxes. We focus on the occurrence of negative cell-averaged scalar fluxes and

negative face-averaged angular fluxes. Two new measures, τwψ and τwφ , are introduced that

essentially play the same role for measuring the positivity of the solution as the error norms do

for quantifying the methods’ accuracy for the MMS test problem.

The thick-diffusion limit test problem is adapted from Ref. [58] for three spatial dimensions.

A set of problems is created via the small parameter ε, driving the total cross section to infinity

and the scattering ratio to unity when ε → 0. The solution satisfies a diffusion equation

to leading order for this test problem and the contending spatial discretization methods are

required to limit to the diffusion solution in the case that the optical cell thickness increases

as 1/ε. If a method approaches the diffusion solution from above, then it possesses the thick

diffusion limit, but if the computed flux limits to zero, it does not possess the diffusion limit.

Numerical results of the contending methods, i.e. performance data, for the three described

test problems are a key item within this work. They are used for two different purposes. First,

a comprehensive comparison is undertaken based on the performance data to assess which

discretization methods performs well with respect to which performance rubric and under which

circumstances (solution smoothness, configuration parameters such as domain optical thickness,

selected error norm etc.). Second, the data is used to develop a decision metric that is intended

for predicting which spatial discretization method will perform best on a different test problem

for a given weighted list of solution performance properties that the code user deems important.

The decision metric thereby computes a fitness score from the data obtained for the MMS test

problem and Lathrop’s test problem and uses this score to find the best discretization method
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among the set of considered methods in this work.

The set of spatial discretization methods is implemented as efficiently as possible to level

the playing field for conducting a fair comparison of their performance as much as possible.

Particular care was taken that none of the methods incurs additional overhead compared with

the other methods. The grind times, i.e. the execution time of the kernel subroutine or the

execution time necessary to solve a single mesh cell for a single discrete ordinate, were measured,

and the ranking of the methods regarding the grind time is summarized in section 7.1.

A new method, the SCT-Step method, was implemented for improving on two shortcom-

ing of standard methods when the exact solution is discontinuous. First, standard methods’

solutions are not convergent in the L∞ norm, i.e. cell-wise, and second they exhibit extremely

small convergence rates in all other Lp norms. The SCT-Step method is an extension of Duo’s

SCT method[1] to three-dimensional Cartesian geometry. The SC and SPs are tracked using

the tracking procedure implemented for the MMS test suite, and the cell segments that arise

from the separation are solved separately using the Step approximation within each segment.

The face fluxes are subsequently saved and propagated by cell segment and are not smeared

over the outflow faces. Thus, cell-wise convergence and order one observed convergence rates

are restored, even for test problems with a discontinuous solution. It is important to stress that

splitting of the mesh into segments is a local operation: the segments only exist for the brief

period that the cell is solved, and the volumetric flux is immediately collapsed to the full-cell

scale at the conclusion of the cell solution instructions.

For increasing efficiency, reliability and accuracy of the AHOTN, LL, and LN methods, a

new method for computing the spatial weights was developed. It is based on a table lookup

in conjunction with a (1,1) Pade interpolation between base points. For each base point, the

three constants defining the Pade approximation at the corresponding optical cell thickness are

saved. The table lookup is very cheap and accurate, and no splitting of the weight computation

into optically thin and thick cells is required. Numerical results corroborate the efficiency and

accuracy of this approach.

Numerical results are obtained for a range of parameters for the MMS and Lathrop test

problems. A comprehensive discussion and comparison among all contending methods was

performed, carefully separating the different parameter regimes where methods’ performance

results change. The obtained results are archived for the purpose of computation of the decision

metric score, which constitutes the quantitative decision metric developed within this work. A

detailed listing of the findings can be found in section 7.1.

As a preliminary study for Lathrop’s test problem, the cause of negative fluxes based on

the solution of a single cell is investigated. This study is very much in the spirit of a local error

analysis. The outflow face-averaged angular fluxes are connected to the inflow face-averaged

fluxes and the cell-averaged source by coupling coefficients. If these coupling coefficients become
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negative, negative fluxes can occur. Within the pertaining section it was shown that cell

sources always increase the flux level and thus never cause negative face-averaged outflow fluxes.

However, West to East, South to North and Bottom to Top coupling coefficients can become

negative and cause negative outflow fluxes.

As the cell-averaged source always increases the flux level and thus may prevent negative

face-averaged angular outflow fluxes, the following experiment was performed. Lathrop’s test

problem was solved with and without using a first collision source. The first collision source is

computed by ray-tracing and is therefore positive. The hope is that the first collision source

elevates the flux level in outlying source-free regions and prevents the occurrence of negative

fluxes. Results for this experiment can be found in section 7.1.

Numerical results for the thick diffusion limit test problem are augmented by analysis as

performed in Ref. [7] for the DD, HODD-1, AHOTN-0, AHOTN-1, LL, and LN methods in

three-dimensional Cartesian geometry. To the knowledge of the author, the analysis performed

for the named methods is new for three-dimensional Cartesian geometry. The numerical results

corroborate the analysis wherever available, and produce numerical evidence pertaining to the

possession of the thick diffusion limit by all other methods. A detailed list of which methods

possess the thick diffusion limit can be found in section 7.1.

The numerical results obtained for the three test problems culminate into a qualitative

ranking of the contending spatial discretization methods. This ranking allows code practitioners

to quickly check various performance rubrics and compare methods among each other to find

a suitable, if not the most suitable, discretization method for their application.

The decision metric is an attempt to create a quantitative measure that predicts how well

a discretization method will perform for a certain purpose, i.e. given a checklist of aspects

that the code practitioner is interested in. The decision metric score is a generalized geometric

average of weighted single-aspect scores, each of which is obtained from the data collected from

the MMS and Lathrop’s test problems. A properly normalized logarithmic scale is used to

obtain single-aspect scores varying between zero and one.

The predictions of the developed decision metric are validated against the NEA box-in-

box benchmark problem. The validation exercise consists of predicting the performance of the

contending discretization methods for different parameter sets of the NEA benchmark which

concludes the prediction step. At the end of the prediction step the predicted scores ranking

the contending methods from best to worst is obtained. The validation step comprises solving

the NEA benchmark problem directly using the contending methods, determining accuracy,

execution time and negativity measures and using these quantities for computing the real per-

formance score. The validation exercise is completed by comparing the predicted and real scores

via a penalty function.
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7.1 Findings

Nodal FEM Framework: The HODD method is found to belong to the class of nodal finite

element methods, but in contrast to the two DGFEM families, used within this work the HODD

is a Discontinuous Petrov Galerkin FEM characterized by different test and trial spaces. The

test space V of the HODD-Λ method is a Lagrange space of order Λ, i.e. xmxymyzmz for

mx,my,mz = 0, ...Λ, while the trial space T is equal to the test space augmented by the

following trial functions:

T = V ∪ {xΛ+1ymyzmz}my ,mz=0,...,Λ ∪ {xmxyΛ+1zmz}mx,mz=0,...,Λ ∪ {xmxymyzΛ+1}mx,my=0,...,Λ.

For generating enough equations for uniquely determining all the expansion coefficients weak

continuity between the inflow interior and exterior traces is imposed.

MMS3D Tracking Routine: The code MMS3D implements the preparation of all necessary in-

put data for the execution of a generic SN solver and computation of the cell-wise spatial

discretization error afflicting this solution. Within the MMS3D code, tracking of the Singular

Characteristic (SC) and Singular Planes (SPs) is facilitated using an algorithm that is based

on following/tracking the SC, and subsequently the SPs, through the computational domain.

It is shown that this algorithm scales with the number of linear subdivisions Ik with k = x, y, z,

where Ik is the number of cells in the k dimension. If utilized in a Singular Characteristic

Tracking type SN solver implementation of this algorithm will consume much less execution

time in the limit of many mesh cells than the actual mesh sweep.

Computation of Spatial Weights for AHOTN, LL, LN: A new approach for computing the spa-

tial weights of TMB methods, i.e. AHOTN, LL, and LN, is introduced within this work. It is

based on a table lookup with Pade interpolation for obtaining values in-between base points.

The advantage of the utilized (1,1) Pade approximation is that it correctly reproduces both

the fine and coarse mesh limits for even and odd Λ. The implementation is found to be very

efficient and accurate, with relative errors of the computed weights being bounded below 1 %.

Most errors however, are smaller than 0.01 %.

Methods’ Grind Times: The grind time is the execution time required for completing all oper-

ations necessary for the solution of a single mesh cell for a single direction. Grind times are

measured for all contending discretization methods, along with a break-down of the operations

it consists of grouped into four categories: computation of spatial weights, setting up the local

linear system, solution of the local linear system, and upstreaming. It is found that the LD and

DD method have the shortest grind times ( 0.1µs), followed by the LN (0.5µs) and LL (1µs)
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methods.

The arbitrary order methods start with grind times of 1.7, 4.3, 4.5, and 5.3 µs for DGC-1,

DGLA-1, HODD-1 and AHOTN-1, respectively. Increasing Λ leads to significantly longer grind

times because the linear solve step scales with the ninth power of Λ1. The modest increase in

grind time is observed for the DGC method because it omits some of the higher-order mixed

unknowns. Following the scaling argument, the linear solve takes the largest fraction of the

grind time even for Λ = 1 method, but increases with Λ to be the sole dominating task during

the cell solve. The ranking from fastest to slowest does not remain the same for all orders of

Λ: for Λ = 1 the order is DGC-1, DGLA-1, HODD-1 and AHOTN-1, while for Λ = 3 the order

is DGC-3, HODD-3, AHOTN-3 and finally DGLA-3. The DGLA method’s grind time appears

to increase faster than the other methods’ grind times.

FOM for Comparison of Discretization Methods: The Figure of Merit plays a dominant role in

comparing the efficiency of various Monte-Carlo methods with and without variance reduction.

The higher the FOM, the more efficient the associated Monte-Carlo method. Within this work,

a similar quantity was derived for spatial discretization methods that is based on the observation

that the observed accuracy (rate of convergence of the discretization error) is limited by the

smoothness of the exact solution. Therefore, it does not matter which discretization methods

is utilized, the rate of convergence λ will be problem dependent but invariant for all methods.

The FOM for comparison of spatial discretization methods suggested within this work is given

by:

FOM =
1

‖ε‖T λ/3
,

where ‖ε‖ is the discretization error and T the total execution time. This quantity becomes

constant in the asymptotic regime and grows larger the more efficient the method is. Therefore,

it plays essentially the same role for SN discretization methods as the FOM for Monte-Carlo

methods. The FOM is used to measure computational efficiency in the framework of the decision

metric discussion.

Cancellation of Error: Cancellation of error is an artifact of error norms that “average before

applying absolute values”. Under these conditions positive and negative contributions of the

pointwise error distribution can cancel and the error measured in a particular error norm appears

to be abnormally small. It is found within this work that cancellation of error measured with

the quantity Ca decreases with mesh refinement if discrete Lp norms are employed, but does not

decrease with mesh refinement for integral error norms. Numerical evidence that cancellation of

error is responsible for volatile dips and non-monotonicity in the error-vs-execution time curves

is provided by comparing discrete L2 error norms (allows cancellation of error) with continuous

1LU decomposition scales like n3, where n is the number of unknowns and here n ∝ (Λ + 1)3
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L2 error norms (does not allow cancellation of error). For the latter case, the dips disappear

and a straight line in a log-log plot of error versus execution time is obtained.

It is observed that cancellation of error is more severe for C0 problems, which is attributed

to the oscillation of numerical solutions around discontinuities (Gibbs’ phenomenon). The

oscillations translate into a pointwise error distribution that has a small mean value but large

amplitudes which naturally encourages the occurrence of cancellation of error.

The SCT-Step Method: The SCT-Step method is created to resolve problems that standard

methods encounter during the solution of C0 problems, namely extremely small rates of con-

vergence and lack of cell-wise convergence. The SCT-Step method utilizes the efficient tracking

algorithm originally developed for the MMS3D code such that numerical overhead compared

with standard discretization methods decreases as the mesh is refined. The Step approximation

is utilized within cells that are intersected by the SC or SPs and AHOTN-0 is employed for all

other cells.

In C0 configurations, the SCT-Step method recovers cell-wise convergence and is more

efficient than standard methods for sufficiently fine meshes. However, it is found that while

some methods feature smaller errors than SCT-Step on coarse meshes, these results are largely

facilitated by cancellation of error, which makes these results not trustworthy. In contrast,

for C1 problems and when the error is measured in the integral norm, standard methods are

superior to SCT-Step. This is due to the poor quality of the Step approximation. Therefore,

it is suggested to devise a higher-order version of SCT algorithm capitalizing on the possible

higher rates of convergence.

HODD for Optically Thick Non-Diffusive Cells: In the non-diffusive thick limit, i.e. σt → ∞,

but c << 1, the exact angular flux solution behaves like 1/σt. In order to yield reasonable

results, a discretization method must satisfy the same behavior in the said limit for both cell

flux moments and face flux moments. Using a discrete version of the asymptotic analysis, it is

shown that weighted diamond difference (WDD) methods satisfy the 1/σt behavior only if the

spatial weights limit to unity for σt → ∞. This condition is satisfied for the AHOTN method

but not for the HODD method. Therefore, the HODD method for all orders fails dramatically

for optically coarse meshes.

General Results for MMS Test Problem:

• Results for C1 problems:

– The most efficient method depends on the norm that is used to quantify the error.

A synopsis of the best performer depending on norm and test case specification is

provided in Table 7.1.
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– When Lp norms are utilized, higher-order methods perform better than lower-order

methods. However, if integral quantities are sought, first order methods perform

better than higher-order methods. The reason for this behavior is the larger permis-

sible rate of convergence λ for integral error norms. This can be proven by looking at

the ratio of the FOM for two spatial discretization methods, one high-order method

and one low-order method. The ratio of their FOMs are:

d = dεd
λ/3
t ,

where dε characterizes the ratio of the low-order method’s error to the high-order

method’s error on the same mesh and dt is the ratio of their grind times. For d < 1

the higher-order method is better, while d > 1 means that the low-order method is

better. Typically, dε < 1 and dt > 1. However, with increasing λ more importance is

given to a shorter execution time such that for some λ the cheaper method is always

more efficient.

– For Lp error norms AHOTN-3 performs best except for highly skewed aspect ratios.

– For Lp error norms and highly skewed aspect ratios the DGC-3 method performs

best. The reasons are its inherent cheapness compared to AHOTN-3, HODD-3, and

DGLA-3, and the low impact of mixed cross moments on the solution for highly

skewed meshes.

– For optically thick cells the TMB methods, such as AHOTN (Lp norms) and LN

(integral norms) outperform the competitors by a large margin.

– Generally, for integral error norms the LN methods performs most efficiently.

– A boundary layer effect is observed for optically thick domains. It is caused by the

combination of a norm that allows cancellation of error and a flux profile that is very

steep close to the boundary but essentially flat away from the boundary. It is shown

that smearing across the mesh cells that contain the boundary layer first lead to a

very small error, then to a peak in the error versus mesh-spacing curve and finally

to a decrease of error leading into the asymptotic regime. While the boundary layer

effect is related to cancellation of errors, the distinct difference from generic error

cancellation effects is the smoothness of the resulting curves.

• Results for C0 problems:

– If the error is measured in a L norm, SCT-Step is the best performing method.

– If the error is measured in an integral norm, the same conclusion holds as for C1

problems: LN is the best performer.
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Table 7.1: Synopsis of the best performers for different parameters and norms for the MMS
test suite .

C0 C1

Lp Integral Norm Lp Integral Norm

Standard Case SCT-Step LN AHOTN-3 LN
Optically Thick SCT-Step LN AHOTN-3 LN
Standard Case SCT-Step LN DGC-3 LN

Positivity of Spatial Discretization Methods:

• Coupling Coefficients:

– Coupling coefficients couple inflow and source averages to outflow face-averaged

fluxes. Since inflow/source average ought to be positive, the cause for negative

outflow averages are necessarily negative coupling coefficients.

– Source-outflow coupling is found to be always greater than zero. Therefore, cell-

averaged sources always contribute to a positive outflow flux.

– Incorrect coupling is defined as coupling between inflow and outflow faces that, in

the real world, should be uncoupled. Incorrectly coupled faces of the type −k → k

with k = x, y, z often feature negative coupling coefficients causing negative outflow

face-averaged fluxes for intermediate and thick optical cells.

• Results from Lathrop’s Test Problem:

– Odd order methods: AHOTN-1,3, DGLA-1,3, and HODD-0,2 for example are more

prone to developing negative fluxes.

– HODD features larger τwk with k = ψ, φ than AHOTN.

– LL/LN perform very similarly to AHOTN-1.

– SCB is the most resilient against negative fluxes with negative fluxes hardly occurring

during the whole Lathrop test case study.

– Following SCB, AHOTN-2, DGLA-2, and DGC-2 are least prone to negative fluxes.

• A first collision source is tested as a remedy for negative fluxes. The rationale for using a

first collided flux is that a larger, positive source within some region will always increase

the flux level and mitigate the occurrence of negative cell-averaged face fluxes. Because

of the ray-tracing procedure utilized for computing the uncollided flux, the first collision
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source is positive. It is found that using the first collision source reduces the negativity

measure τwφ by up to three orders of magnitude, but does not eliminate negative fluxes

completely.

Thick Diffusion Limit: Adams’ analysis applied to DGFEM methods of order one[7] was ex-

tended to WDD type methods of order up to one: DD, HODD-1, AHOTN-0, AHOTN-1, LL,

and LN. The analysis shows that AHOTN-1 has a diffusion limit, while none of the other

methods possess it. Numerical results using the thick diffusion test case are obtained for all

contending methods up to order Λ = 3. The results are:

• DGLA methods possess the diffusion limit except for Λ = 0.

• DGC methods do not possess the diffusion limit for any Λ.

• AHOTN methods possess the diffusion limit except for Λ = 0.

• HODD methods do not possess the diffusion limit for any Λ.

• LL and LN do not possess the diffusion limit.

Wherever analysis is available, numerical results corroborate the analysis.

Construction of a Quantitative Decision Metric:

The decision metric proved to be a useful utility for selecting methods given a certain

weighted list of performance aspects for many validation test cases. For some cases its predic-

tions were not optimal in the sense that the true best performer was not identified correctly or

even that the first three suggestions did not include the best performer. However, the decision

metric never suggested using a detrimentally bad performer either, i.e. it never suggested us-

ing the actual worst or second worst discretization scheme. In addition, even under the worst

circumstances, among the first three suggestions of the decision metric was at least one that

came within 15% of the best performer’s score.

For improving the accuracy of the decision metric three remedies are suggested:

• Increase the amount of data used to make decisions. Enable aggregation of data from

different tests but pertaining to the same performance aspect, for example accuracy.

• Make a more accurate classification of target quantities. For example, region-averaged

fluxes could be classified by size compared to domain size and their position with respect

to the boundary. This approach might preclude the logical contradiction of the decision

score mentioned earlier.
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• Enable accurate interpolation based on all important macroscopic quantities between

models to match suitable data sets to the problem that performances are to be predicted

for.

7.2 Conclusion

The primary conclusion of this work is that the decision metric can be a useful utility compared

to a purely qualitative assessment of the methods’ performance. In most cases, the decision

metric’s suggestions are reasonable. Often the best performer is identified correctly, but even

if it is not, typically the decision metric’s top suggestion is within 10% of the actual best

performer.

Improvements on the data basis, the aggregation of data from different sources, and a

better classification of target quantities are expected to increase the reliability of the decision

metric. Therefore, this work can only serve as a proof of principle that prediction of methods’

performance for some problem of interest can be based on data from a set of different already

solved problems. Clearly, the results are encouraging given the great agreement of prediction

for some of the validation exercise cases. Especially for cases where multiple performance

aspects are being optimized, the guidance could be very valuable. However, the potential user

of the decision metric should keep in mind that its predictions are afflicted with an inherent

uncertainty.

In addition to the development of the quantitative decision metric, an MMS test suite

was developed that may serve as a test problem for new spatial discretization methods. It

is implemented in the code MMS3D, which will be made available to the public soon. Its

features are an efficient and accurate tracking procedure and accurate analytical integration

routines that allow for an arbitrary expansion order of the discretization methods receiving the

data. The test suite itself allows for creation of an exact solution with an arbitrary order of

non-smoothness along with the associated distributed source and boundary conditions.

The most important conclusion from the numerical results is the inadequate accuracy and

computational efficiency of standard discretization methods for C0 problems. As a remedy, the

SCT-Step method was implemented that resolves the lack of cell-wise convergence of standard

methods for C0 problems. However, the SCT-Step method suffers from the low quality of the

Step approximation. If a higher-order methods is implemented in conjunction with the SCT

algorithm, the resulting method will allow rates of convergence greater than or equal to two,

overcoming one of the most limiting conditions imposed by the non-smoothness of the SN

equations’ exact solution. A clear path to such a method is outlined within this work.
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7.3 Future Work

There are some directions that appear worthy for further research. A list of these directions

that is certainly not complete, is provided in the following:

• Development of a high-order SCT method: The underlying problem for deployment

of high-order expansion methods for SN problems is that they cannot play out their

greatest benefit over higher-order methods: the increased rate of convergence. The SCT

algorithm appears to provide the means to recover the theoretically predicted convergence

rates for practical problems. A clear path to a high-order SCT has already been outlined

before, so it shall not be repeated here. The potential benefit of a functional higher-order

SCT methods is enormous because it might easily be the most efficient discretization

method.

• Increasing the data basis for decision metric: The data basis used for computing

the decision score employed within this work is not sufficient. First, the existing test

problems need to be solved for a much greater variety of parameters. Second, additional

test problems should be added to widen the scope of the data sets.

• Interpolation between test problems: In order to better match the data that the

predicted scores are based on and the actual test case, interpolation of the data between

values of macroscopic key parameters such as optical domain thickness, scattering ratios

etc, is required. In addition, an exhaustive list of all relevant macroscopic key parameters

needs to be compiled for each performance aspect.

• Aggregation of data into the decision metric: The single aspect scores are computed

from only one test data set within this work. A way could be devised to combine data

from various sets into a single aspect score in order to increase its reliability.

• Adding more performance aspects to the decision metric: So far only two aspects

of performance were investigated: negativity and efficiency of the solution. Other aspects

should could be added, for example the quality of the approximation in the thick diffusive

limit. The thick diffusive limit was only discussed qualitatively within this work but a

quantitative measure of a discretization method’s performance in the thick diffusion limit

could be devised.
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Appendix A

Special Functions

A.1 Legendre Polynomials

The Legendre polynomials[70] Pl(s) with l = 0, 1, 2, ... are fully defined via the three-point

recursion relation:

(l + 1)Pl+1(s) = (2l + 1)sPl(s)− lPl−1(s), (A.1)

and the first two Legendre polynomials:

P0(s) = 1

P1(s) = s.

The Legendre Polynomials are orthogonal on the interval s ∈ [−1, 1]:∫ 1

−1
dsPl(s)Pk(s) =

2

2l + 1
δlk, (A.2)

and complete, i.e. any function on s ∈ [−1, 1] can be expanded into a series of Legendre

polynomials:

f(s) =

∞∑
l=0

(2l + 1)alPl(s) (A.3)

where the modes al can be obtained by

al =
1

2

∫ 1

−1
dsPl(s)f(s). (A.4)
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The Legendre polynomials scaled to cell i denoted by pil(s) are defined by:

pil(s) = Pl

(
2
s− si+si−1

2

si − si−1

)
, (A.5)

where si and si−1 are the upper and lower cell boundary in s direction. For convenience the cell

index i might be dropped whenever possible. In analogy to the original Legendre polynomials

the scaled Legendre polynomials can be used to expand an arbitrary function on the interval

[si−1, si] via:

f(s) =
∞∑
l=0

(2l + 1)alp
i
l(s) (A.6)

al =
1

si − si−1

∫ si

si−1

ds pil(s)f(s). (A.7)

A.2 Interpolation via Lagrange Polynomials

Following [71] the interpolation of order L uses an L-th order polynomial

f(s) =

L∑
l=0

bldl(s), (A.8)

to match the value of the function f(s) at L distinct points within the domain. If we denote the

interpolation points by sl , l = 0, 1, ... and select the dl(s) to be the lth Lagrange polynomial of

order L defined by:

dl(s) =

L∏
k=0,k 6=l

(s− sk)

L∏
k=0,k 6=l

(sl − sk)
. (A.9)

which features the following convenient property:

dl(xk) = δlk, (A.10)

then the bl can be identified as the values of the interpolated functions at the interpolation

points:

bl = f(sl). (A.11)

In the FEM method Lagrange basis functions are used within the nodal basis, where the un-

knowns are the nodal values of the unknown angular flux. If the interpolated function is a

polynomial of degree L then the interpolation of the same order is equivalent to the expan-
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sion into Legendre polynomials truncated after the L-th order term. The modes and nodes

are moreover related by the generalized Vandermonde matrix[10]. However, if the interpolated

function is not a polynomial then the interpolation and truncated Legendre series will generally

not coincide.

A.3 Relation between Continuous and Discrete L2 Norm

For the L2 norm error the discrete error norm can shown to be an approximation of the con-

tinuous error norm. To show this we write the continuous error norm as:

‖εn‖2c,ψ,2 =
N∑
n=1

wn
∑
~i

∫
Q~i

dV
(
ψn − ψhn

)2
. (A.12)

Then we expand the approximate and the true solution within each cell into an infinite series

of cell normalized Legendre polynomials pil(s). Several properties and the first few Legendre

polynomials are reviewed in Sec. A.1. Due to the completeness of the Legendre polynomial the

exact and approximate angular flux can be expanded as follows

ψ
~i
n =

∞∑
mx=0

∞∑
my=0

∞∑
mz=0

(2mx + 1) (2my + 1) (2mz + 1)ψ
~i
n,~mp

i
mx (x) pjmy (y) pkmz (z)

=
∞∑
~m=0

(2mx + 1) (2my + 1) (2mz + 1)ψ
~i
n,~mp

~i
~m(~r)

ψh,
~i

n =
∞∑

mx=0

∞∑
my=0

∞∑
mz=0

(2mx + 1) (2my + 1) (2mz + 1)ψh,
~i

n,~mp
i
mx (x) pjmy (y) pkmz (z)

=
∞∑
~m=0

(2mx + 1) (2my + 1) (2mz + 1)ψh,
~i

n,~mp
~i
~m(~r), (A.13)

where ψ
~i
n,~m and ψh,

~i
n,~m are the cell Legendre moments of the exact and approximate angular flux

that can be computed by:

ψ
~i
n,~m = M

~i
~m {ψn (~r)}

M
~i
~m {•} =

1

V~i

∫
V
dV p~m~m (~r) • . (A.14)
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For convenience the triple sums and the triple products of Legendre polynomials are abbreviated

by:

Λ∑
~m=0

• =
Λ∑

mx=0

Λ∑
my=0

Λ∑
mz=0

•

p
~i
~m (~r) = pimx (x) pjmy (y) pkmz (z) . (A.15)

Note, that even though the exact solution might be discontinuous within a cell, the Legendre

polynomial expansion converges to the original function almost everywhere as long as it is

square integrable[72]. Substituting the Legendre Polynomial expansions Eqs. A.13 into the L2

norm expression Eqs. A.12 we obtain:

‖εn‖2c,ψ,2 =

N∑
n=1

wn
∑
~i

∫
Q~i

dV

[ ∞∑
~m=0

ψ
~i
n,~mp~m(~r)

]2

+

[ ∞∑
~m=0

ψh,
~i

n,~mp~m(~r)

]2

−

[ ∞∑
~m=0

ψ
~i
n,~mp~m(~r)

][ ∞∑
~m=0

ψh,
~i

n,~mp~m(~r)

] . (A.16)

Multiplying out the sums and using the orthogonality of the Legendre polynomials Eq. A.16

can be simplified to:

‖εn‖2c,ψ,2 =
N∑
n=1

wn
∑
~i

 ∞∑
~m=0

V
~i

(
ψ
~i
n,~m − ψ

h,~i
n,~m

)2

(2mx + 1)(2my + 1)(2mz + 1)

 (A.17)

Now we separate out the ~m = 0 contribution from the summation and since ε
~i
n = ψ

~i
n,0 − ψ

h,~i
n,0

we can write:

‖εn‖2c,ψ,2 = ‖εn‖2d,ψ,2 +

N∑
n=1

wn
∑
~i

 ∞∑
~m=0

V
~i

(
ψ
~i
n,~m − ψ

h,~i
n,~m

)2

(2mx + 1)(2my + 1)(2mz + 1)
(1− δ~m)

 , (A.18)

where δ~m = δmx,myδmx,mz is given in terms of Kronecker deltas. The continuous L2 norm in Eq.

A.18 can thus be separated into the the discrete L2 norm plus higher Legendre moment error

norms. Therefore, the discrete L2 error norm can be seen as a truncated continuous L2 error

norm. However, the same is not true in general for continuous and discrete Lp error norms.

For a C1 test case with σt = 1 and c = 0.2 the error vs. mesh size h is depicted in Fig. A.1

for various truncation orders λ. λ is the maximum order up to which the second summation in

251



www.manaraa.com

Eq. A.18 is performed.

10-2 10-1 100

h

10-3

10-2

10-1

L2
 e

rr
or

L2 error (continuous and discrete) for DGFEM Lagrange with Λ =1

λ=0

λ=1

λ=2

λ=3

λ=4

Continuous L2

Figure A.1: “Approximation” of continuous L2 norm by the sum in Eq. A.18 for different
maximum orders λ up to which the second summation is performed.
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Appendix B

Spatial Discretization Schemes

B.1 HODD Derivation via Interpolation

The HODD relations by Hebert can be derived by assuming flux shape Eq. 2.26 which is

required to reproduce the cell face moments ψhF,~mt t = x, y, z and ψh~m. For demonstration

it is sufficient to show the derivation along a single spatial dimension x, y or z because the

other two dimensions follow by analogy. We select to derive the HODD relations along the x

dimension relating the east and west face Legendre moments. The following quantities need to

be reproduced by Eq. 2.26:

ψhW,~mx =
1

∆y∆z

∫ yj

yj−1

dy

∫ zk

zk−1

dz pmy(y)pmz(z)ψ
h(xi−1, y, z), my,mz = 0, ...,Λ

ψhE,~mx =
1

∆y∆z

∫ yj

yj−1

dy

∫ zk

zk−1

dz pmy(y)pmz(z)ψ
h(xi, y, z), my,mz = 0, ...,Λ

ψh~m =
1

∆x∆y∆z

∫ xi

xi−1

dx

∫ yj

yj−1

dy

∫ zk

zk−1

dz pmx(x)pmy(y)pmz(z)ψ
h(x, y, z),

mx,my,mz = 0, ...,Λ, (B.1)

Substituting Eq. 2.26 into Eq. B.1 gives the following expressions for ψhW,~mx , ψhE,~mx and ψh~m:

ψhW,~mx =
1

(2my + 1) (2mz + 1)

Λ+1∑
mx

(−1)mx α~m, my,mz = 0, ...,Λ

ψhE,~mx =
1

(2my + 1) (2mz + 1)

Λ+1∑
mx

α~m, my,mz = 0, ...,Λ

ψh~m =
α~m

(2mx + 1) (2my + 1) (2mz + 1)
, mx,my,mz = 0, ...,Λ. (B.2)
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In order to relate the west and the east face moments we compute ψhE,~mx − (−1)Λ+1ψhW,~mx such

that αΛ+1,my ,mz is canceled out because it is the only α~m that does not directly correspond to

a cell Legendre moment. We obtain the following relationships:

Λ even: ψhE,~mx + ψhW,~mx = 2
Λ∑

mx=0,even

α~m
(2my + 1) (2mz + 1)

Λ odd: ψhE,~mx − ψ
h
W,~mx = 2

Λ∑
mx=1,odd

α~m
(2my + 1) (2mz + 1)

, (B.3)

and by Eq. B.2 we obtain the HODD auxiliary relation along the x dimension:

Λ even: ψhE,~mx + ψhW,~mx = 2
Λ∑

mx=0,even

(2mx + 1)ψh~m

Λ odd: ψhE,~mx − ψ
h
W,~mx = 2

Λ∑
mx=1,odd

(2mx + 1)ψh~m. (B.4)

B.2 Evaluated TLD Matrices for Lagrange Interpolation Poly-

nomials

254



www.manaraa.com

TLD equations generated with Lagrange interpolation functions. 

Numbering of unknowns as in Fig. 3.6

Define the function space first

lagrange =

xu -x

xu -xl

yu -y

yu -yl

zu -z

zu -zl

x -xl

xu -xl

yu -y

yu -yl

zu -z

zu -zl

x -xl

xu -xl

y -yl

yu -yl

zu -z

zu -zl

xu -x

xu -xl

y -yl

yu -yl

zu -z

zu -zl

xu -x

xu -xl

yu -y

yu -yl

z -zl

zu -zl

x -xl

xu -xl

yu -y

yu -yl

z -zl

zu -zl

x -xl

xu -xl

y -yl

yu -yl

z -zl

zu -zl

xu -x

xu -xl

y -yl

yu -yl

z -zl

zu -zl

;

Mass Matrix normalized by 216 / V

mass = Simplify B
216

Hxu - xlL Hyu - ylL Hzu - zlL
Integrate@lagrange.Transpose@lagrangeD,

8x , xl, xu<, 8y , yl, yu<, 8z, zl, zu<DF; MatrixForm @massD

8 4 2 4 4 2 1 2
4 8 4 2 2 4 2 1
2 4 8 4 1 2 4 2
4 2 4 8 2 1 2 4
4 2 1 2 8 4 2 4
2 4 2 1 4 8 4 2
1 2 4 2 2 4 8 4
2 1 2 4 4 2 4 8

Lumped Mass Matrix normalized by 216 / V

lmass = Simplify B
216

Hxu - xlL Hyu - ylL Hzu - zlL
Integrate@Table@Flatten@lagrangeD @@iDD KroneckerDelta@i, jD, 8i, 1, 8<, 8j, 1, 8<D,

8x , xl, xu<, 8y , yl, yu<, 8z, zl, zu<DF; MatrixForm @lmassD

27 0 0 0 0 0 0 0
0 27 0 0 0 0 0 0
0 0 27 0 0 0 0 0
0 0 0 27 0 0 0 0
0 0 0 0 27 0 0 0
0 0 0 0 0 27 0 0
0 0 0 0 0 0 27 0
0 0 0 0 0 0 0 27

Surface Matrix at East Surface normalized by face area and appropriate factor

Printed by Mathematica for Students
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lagx = lagrange �. 8x ® xu<;

surfE =

Simplify B
36

Hyu - ylL Hzu - zlL
Integrate@lagx .Transpose@lagx D, 8y , yl, yu<, 8z, zl, zu<DF;

MatrixForm @surfED
0 0 0 0 0 0 0 0
0 4 2 0 0 2 1 0
0 2 4 0 0 1 2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 1 0 0 4 2 0
0 1 2 0 0 2 4 0
0 0 0 0 0 0 0 0

Lumped Surface Matrix at East Surface normalized by face area and appropriate factor

lsurfE =

Simplify B
36

Hyu - ylL Hzu - zlL
Integrate@Table@Flatten@lagx D @@iDD KroneckerDelta@i, jD,

8i, 1, 8<, 8j, 1, 8<D, 8y , yl, yu<, 8z, zl, zu<DF; MatrixForm @lsurfED

0 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 9 0 0
0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 0

Stiffness matrix x-derivative normalized by face area and appropriate factor

stiffx = Simplify B
72

Hyu - ylL Hzu - zlL
Integrate@D@lagrange, x D.Transpose@lagrangeD,

8x , xl, xu<, 8y , yl, yu<, 8z, zl, zu<DF; MatrixForm @stiffx D

- 4 - 4 - 2 - 2 - 2 - 2 -1 -1
4 4 2 2 2 2 1 1
2 2 4 4 1 1 2 2

- 2 - 2 - 4 - 4 -1 -1 - 2 - 2
- 2 - 2 -1 -1 - 4 - 4 - 2 - 2
2 2 1 1 4 4 2 2
1 1 2 2 2 2 4 4

-1 -1 - 2 - 2 - 2 - 2 - 4 - 4

Lumping of the stiffness matrix normalized by surface area and appropriate factor

dlagx = Flatten@D@lagrange, x DD;

lag = Flatten@lagrangeD;

2   reference_TLD_lagrange.nb

Printed by Mathematica for Students
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stiffI = Table@ 0 , 8row , 1, 8<, 8col, 1, 8<D;

r =

xl yl zl

xu yl zl

xu yu zl

xl yu zl

xl yl zu

xu yl zu

xu yu zu

xl yu zu

;

Do@ b@x_ , y_ , z_ D = dlagx @@colDD ;

xc = r @@row , 1DD; yc = r @@row , 2DD; zc = r @@row , 3DD;

stiffI@@row , colDD = b@xc, yc, zcD Integrate@lag@@row DD,

8x , xl, xu<, 8y , yl, yu<, 8z, zl, zu<D , 8row , 1, 8<, 8col, 1, 8<D;

lagxu = lagrange �. 8x ® xu<;

lagxl = lagrange �. 8x ® xl<;

El = Simplify @Integrate@Table@Flatten@lagxlD @@iDD KroneckerDelta@i, jD,

8i, 1, 8<, 8j, 1, 8<D, 8y , yl, yu<, 8z, zl, zu<DD;

Eu = Simplify @Integrate@Table@Flatten@lagxuD @@iDD KroneckerDelta@i, jD,

8i, 1, 8<, 8j, 1, 8<D, 8y , yl, yu<, 8z, zl, zu<DD;

lstiffx = - stiffI - El + Eu;

Simplify B
8

Hyu - ylL Hzu - zlL
lstiffx F �� MatrixForm

-1 -1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 -1 -1 0 0 0 0
0 0 0 0 -1 -1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 -1 -1

reference_TLD_lagrange.nb  3

Printed by Mathematica for Students

257



www.manaraa.com

B.3 Evaluation of Pade Coefficients for Spatial Weights
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Definition of the Spatial Weights 

� General Definition of the weight Α

Ε are the projections of the exponentials on Legendre Polynomials as defined in the AHOT -
N WDD paper

Ε@t_ , i_ D :=
2 i + 1

2
à

-1

1

Exp@t x D LegendreP@i, x D â x

Define Numerator as in the WDD paper

Num @t_ , L_ D := HCosh @tD - Sum @Ε@t, iD, 8i, 0, L , 2<DL
Define denominator accordingly:

Den@t_ , L_ D := HSinh @tD - Sum @Ε@t, iD, 8i, 1, L , 2<DL
Α is the ratio of these two. Note that for small t I expand using a Pade approximant around
t=0 of order (10,10) to supress noise.

Α0@t_ D =

Piecewise@88PadeApproximant@Simplify @Num @t, 0D � Den@t, 0DD, 8t, 0, 10<D, t < 1 � 10<,

8Simplify @Num @t, 0D � Den@t, 0DD, t ³ 1 � 10<<D;

Α1@t_ D =

Piecewise@88PadeApproximant@Simplify @Num @t, 1D � Den@t, 1DD, 8t, 0, 10<D, t < 1 � 10<,

8Simplify @Num @t, 1D � Den@t, 1DD, t ³ 1 � 10<<D;

Α2@t_ D =

Piecewise@88PadeApproximant@Simplify @Num @t, 2D � Den@t, 2DD, 8t, 0, 10<D, t < 1 � 10<,

8Simplify @Num @t, 2D � Den@t, 2DD, t ³ 1 � 10<<D;

Α3@t_ D =

Piecewise@88PadeApproximant@Simplify @Num @t, 3D � Den@t, 3DD, 8t, 0, 10<D, t < 1 � 10<,

8Simplify @Num @t, 3D � Den@t, 3DD, t ³ 1 � 10<<D;

Determine Local Expansion of AHOTN Weight - 
arbitrary grid spacing

� Get list of local expansions coefficient

Set the order here

order = 0;

coeff contains the expansion coefficients: I use a Pade approximation of order (1,1) and a
grid with constant spacing of
D so I will have (tm/ D)+1 grid points between 0 and tm. Note that the expansion coeffi-
cients can be very easily extracted 
from the list coeff by a simple round operation and a subsequent Min( (tm/ D)+1,Round(
t/D)+1). Then the weight
Α can be computed with 4 fetches, 2 multiplications, 2 additions and a division. It should
therefore be very cheap. Note that 
computing the table coeff takes some time though, but for the final implementation in
fortran it will be read from a file at the
beginning of the code’s execution and stored in an array. 

Printed by Mathematica for Students
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coeff contains the expansion coefficients: I use a Pade approximation of order (1,1) and a
grid with constant spacing of
D so I will have (tm/ D)+1 grid points between 0 and tm. Note that the expansion coeffi-
cients can be very easily extracted 
from the list coeff by a simple round operation and a subsequent Min( (tm/ D)+1,Round(
t/D)+1). Then the weight
Α can be computed with 4 fetches, 2 multiplications, 2 additions and a division. It should
therefore be very cheap. Note that 
computing the table coeff takes some time though, but for the final implementation in
fortran it will be read from a file at the
beginning of the code’s execution and stored in an array. 

D = 1 � 100; tm = 200;

coeff = Table@0, 8i, 0, tm � D <, 8j, 1, 4<D;

Block@8$MaxExtraPrecision = 1000<, Do@
num = N @CoefficientList@Numerator @PadeApproximant@

Simplify @Num @t, order D � Den@t, order DD, 8t, i D , 81, 1<<DD, tD, 25D;

den = N @CoefficientList@Denominator @PadeApproximant@
Simplify @Num @t, order D � Den@t, order DD, 8t, i D , 81, 1<<DD, tD, 25D;

coeff@@i + 1, 1DD = num @@1DD;

coeff@@i + 1, 2DD = If@Length @num D > 1, num @@2DD, 0D;

coeff@@i + 1, 3DD = den@@1DD;

coeff@@i + 1, 4DD = If@Length @denD > 1, den@@2DD, 0D;, 8i, 0, tm � D <DD
$Aborted

Define approximated Α as function ΑPade

ΑPade@t_ D := i = Min@8Round @t � D D, 1000<D; a = coeff@@i + 1, 1DD;

b = coeff@@i + 1, 2DD; c = coeff@@i + 1, 3DD; d = coeff@@i + 1, 4DD; N B a + b t

c + d t
, 16F ;

Export@"�home�sebastian�PhDWork�ThreeDimensional�Discretization-Schemes�AHOTN �AHOTN �
Approximation_Weights�w3raw .dat", coeff, "Data"D

2  Approximating_AHOTN_weights_showcase.nb

Printed by Mathematica for Students
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B.4 Fine Mesh Limit of AHOTN

In this section it going to be demonstrated that the AHOTN WDD equations limit to the

HODD equations for vanishing cell size. To this end first recall the asymptotic behavior of the

AHOTN spatial weights Eq. 2.50, i.e. for Λ ∈ even, α→ 0 and Λ ∈ odd, α→∞. Given that

the only difference of the AHOTN method and the HODD method is in the auxiliary relations

we only need to show that Eq. 2.48 limits to Eq. 2.24 or 2.25 for Λ even or odd, respectively.

For the even case it is readily seen that:

lim
αn,x→0

1 + αn,x
2

ψhE,~mx +
1− αn,x

2
ψhW,~mx =

Λ∑
mx=0,even

(2mx + 1)ψh~m +
Λ∑

mx=0,odd

(2mx + 1)αn,xψ
h
~m


→

1

2
ψhE,~mx +

1

2
ψhW,~mx =

Λ∑
mx=0,even

(2mx + 1)ψh~m

 , (B.5)

which is identical to the HODD auxiliary relations in x-directions Eq. 2.24 with equivalent

limits applying for the y and z-direction. For the Λ ∈ odd Eq. 2.48 is divided by αn,x and the

limit αn,x →∞ is applied:

lim
αn,x→∞

[(
1

2 αn,x
+

1

2

)
ψhE,~mx +

(
1

2 αn,x
− 1

2

)
ψhW,~mx

=

Λ∑
mx=0,even

(2mx + 1)

αn,x
ψh~m +

Λ∑
mx=0,odd

(2mx + 1)ψh~m


→

1

2
ψhE,~mx −

1

2
ψhW,~mx =

Λ∑
mx=1,odd

(2mx + 1)ψh~m

 , (B.6)

which is identical to the HODD auxiliary relations in x-directions Eq. 2.25 with equivalent

limits applying for the y and z-direction. This completes the proof that AHOTN-Λ limits to

the HODD-Λ method for vanishing mesh size.

B.5 Equivalence of DGFEM and WDD for Two-Dimensional

Geometries

The BPD method in two-dimensional geometry approximates the flux within each cell by:

ψh(x, y) =
Λ∑

lx=0

Λ∑
ly=0

(2lx + 1) (2ly + 1)ψh~l plx(x)ply(y), (B.7)
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In addition let the numerical flux on the four edges W, E, S and N be formally expanded in

terms of Legendre polynomials even though by the virtue of the numerical upstreaming flux

we already prescribed that the pertaining expansion coefficients on the inflow edges are known

from solution the previous cell while the coefficients on the outflow edges are coupled to the

nodal expansion coefficients by requiring that the interior and exterior traces are equal:

ψhF (s) =

Λ∑
ls=0

(2ls + 1)ψhF,lspls(s), s either x or y. (B.8)

For simplicity let us restrict µn > 0 and ηn > 0 such that east and north are outflow faces and

west and south are inflow faces. The trial functions Eq. B.7 are then substituted into the weak

formulation Eq. 2.12 and tested with p~m(x, y) = pmx(x)pmy(y), mx,my = 0, ...,Λ:

µn

{〈
ψhE(y), pmy(y)

〉
E
− (−1)mx

〈
ψhW (y), pmy(y)

〉
W

}
ηn

{〈
ψhN (x), pmx(x)

〉
N
− (−1)my

〈
ψhS(x), pmx(x)

〉
S

}
−µn

(
∂p~m
∂x

, ψh(x, y)

)
− ηn

(
∂p~m
∂y

, ψh(x, y)

)
+ σt

(
p~m, ψ

h(x, y)
)

=
(
p~m, S

h(x, y)
)

(B.9)

Evaluating the integrals and dividing through by the cell area ∆xi ·∆yj results in the Legendre

moments of the transport equation Eq. 2.23. As discussed several times before these equations

have more unknowns than equations such that closure relations need to be found. However,

by choosing a numerical upstream flux we already have devised the closure: The expansion

coefficients on the inflow edges are known from the respective upstream cells, i.e. ψh,
~i

W,ly
= ψh,

~i−ê1
E,ly

and ψh,
~i

S,lx
= ψh,

~i−ê2
N,lx

and the flux on the outflow faces satisfies:

ψhN (x) = ψh(x, yj)

ψhE(y) = ψh(xi, y). (B.10)

Applying the operator 〈•, pms(s)〉F to both sides of Eqs. B.10 gives the following relationship

of the of the nodal and edge flux expansion coefficients:

ψhN,mx =
Λ∑

ly=0

(2ly + 1)ψhmx,ly

ψhE,my =
Λ∑

lx=0

(2lx + 1)ψhlx,my , (B.11)
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which are the WDD closure relations Eq. 2.48 for αx = αy = 1. Thus, the per-cell set of

equations for the two-dimensional BPD FEM comprises the Legendre moments augmented by

the WDD closure relations with αx = αy = 1.

B.6 Flux Reconstruction in 2D Cartesian Geometry

Within this work frequently the approximated flux shape ψh (~r) is referenced. However, it was

never stated how to exactly compute it from the unknowns that the described discretization

methods actually compute, i.e. e.g. the nodal flux moments ψh,
~i
~m . The flux shape within the

domain is the direct sum of the cell flux shapes. This reduces the problem to explaining how

to compute the flux shape ψh,
~i (~r) within cell ~i. The idea behind consistently computing the

cell flux shapes is to reconstruct the flux within each cell using the trial space of the underlying

finite element scheme and relating the unknown coefficients within the finite element trial space

to the actually computed quantities.

B.6.1 HODD

For the 2D HODD and general µn, ηn the following trial space is utilized:

ψh,
~i (~r) =

Λ+1∑
lx,ly=0

(2lx + 1) (2ly + 1) alx,lyPlx(x̂)Ply(ŷ), with aΛ+1,Λ+1 = 0, (B.12)

where

x̂ = 2
signµn x− xi−xi−1

2

∆xi

ŷ = 2
signηn y − yj−yj−1

2

∆yj
. (B.13)

The WDD algorithm solves for the nodal flux moments ψh,
~i
~m and the outflow face flux moments

ψh,
~i

[E,W ],my
and ψh,

~i
[N,S],mx

defined by:

ψh,
~i

mx,my = M~m

{
ψh,

~i (~r)
}

ψh,
~i

F,m =
1

∆xF

〈
pm (~rF ) , ψh,

~i (~rF )
〉
F
, F ∈ Eo. (B.14)
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Substituting the trial space Eq. B.12 into Eqs. B.14 gives equations for computing the alx,ly

from the nodal and outflow flux moments:

amx,my = (signµn)mx (signηn)my ψh,
~i

mx,my , for mx,my = 0, ...,Λ

aΛ+1,my =

ψh[E,W ],my
(signηn)my −

Λ∑
lx

(2lx + 1) alx,my

2Λ + 3

amx,Λ+1 =

ψh[N,S],mx
(signµn)mx −

Λ∑
ly

(2ly + 1) amx,ly

2Λ + 3
. (B.15)

B.6.2 DGFEM (BPD)

For DGFEM in its bipolynomial discontinous modal representation with the trial space given

by

ψh,
~i (~r) =

Λ∑
lx,ly=0

(2lx + 1) (2ly + 1) alx,lyPlx(x̂)Ply(ŷ), (B.16)

the expansion coefficients are related to the nodal moments by:

amx,my = (signµn)mx (signηn)my ψh,
~i

mx,my , for mx,my = 0, ...,Λ. (B.17)

Note, that one could suggest (similar to the HODD) to use the outflow face flux moments

to achieve a “better” flux reconstruction. However, this idea does not work because the face

flux moments in the DGFEM method are just linear combinations of the nodal moments (see

e.g. B.5); once the nodal moments are determined the outflow face flux moments, independent

of the inflow flux moments, are uniquely determined. Therefore, no additional information is

contained in the outflow flux moments.

B.6.3 AHOTN

The reconstruction of the AHOTN flux shape requires the solution of a linear system of equa-

tions per mesh cell and is thus the most difficult. However, the idea for constructing the linear

system of equations follows closely the approach taken for the HODD and DGFEM flux recon-

struction. First, the trial space for two-dimensional Cartesian geometry and µn, ηn > 0 (for
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simplicity) is given by:

ψh (x, y) =
Λ∑

lx=−1

Λ∑
ly=0

a~l ζlx (x) ply (y) +
Λ∑

lx=0

Λ∑
ly=−1

b~l ζly (y) plx (x)

+
Λ∑

lx=0

Λ∑
ly=0

c~l plx (x) pmy (y) , (B.18)

subject to the constraints:

Mmx,my


Λ∑

lx=−1

Λ∑
ly=0

a~l ζlx (x) ply (y)

 =
cmx,my

(2mx + 1) (2my + 1)

Mmx,my


Λ∑

lx=0

Λ∑
ly=−1

b~l ζly (y) plx (x)

 =
cmx,my

(2mx + 1) (2my + 1)
. (B.19)

Using the definitions of the nodal moments and the linearity of the M~m {•} operator we can

relate the c~l directly to the nodal moments:

ψh~m = M~m

{
ψh (x, y)

}
= M~m


Λ∑

lx=−1

Λ∑
ly=0

a~l ζlx (x) ply (y)

+M~m


Λ∑

lx=0

Λ∑
ly=−1

b~l ζly (y) plx (x)


+ M~m


Λ∑

lx=0

Λ∑
ly=0

c~l plx (x) pmy (y)

 =
3c~m

(2mx + 1) (2my + 1)
. (B.20)

Knowing c~l, the constraints Eqs. B.19 can be used to obtain 2 (Λ + 1)2 equations for the

unknown a~l and b~l expansion coefficients:

M~m


Λ∑

lx=−1

Λ∑
ly=0

a~l ζlx (x) ply (y)

 =
Λ∑

lx=−1

alx,my

∫ xi

xi−1

dx pmx(x)ζlx (x) =
∆xic~m

2mx + 1

M~m


Λ∑

ly=−1

Λ∑
lx=0

b~l ζly (y) plx (x)

 =
Λ∑

ly=−1

bmx,ly

∫ yj

yj−1

dy pmy(y)ζly (y) =
∆yjc~m

2my + 1
(B.21)
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The outstanding 2(Λ+1) equations can be obtained by matching the E and N outflow face flux

moments in the following manner:

ψhE,my =
1

∆yj

〈
pmy(y), ψh (xE , y)

〉
E

ψhN,mx =
1

∆xi

〈
pmx(x), ψh (x, yN )

〉
N
. (B.22)

Evaluating the expressions Eq. B.22 yields the following 2(Λ + 1) equations:

1

2my + 1

Λ∑
lx=−1

alx,myζlx (1) +
1

∆yj

Λ∑
lx=0

Λ∑
ly=−1

b~l

∫ yj

yj−1

dy pmy(y)ζly (y)

= ψhE,my −
Λ∑

lx=0

clx,my
2my + 1

1

2mx + 1

Λ∑
ly=−1

bmx,lyζly (1) +
1

∆xi

Λ∑
ly=0

Λ∑
lx=−1

a~l

∫ xi

xi−1

dy pmx(x)ζlx (x)

= ψhN,mx −
Λ∑

ly=0

cmx,ly
2mx + 1

. (B.23)

The Eqs. B.21 and B.23 constitute a system of 2 (Λ + 1)2 +2 (Λ + 1) equations for the unknown

a~l and b~l.

Within this work the flux reconstruction is used for prolonging the flux from coarse onto

fine meshes for computing type II error norms. In general, flux reconstruction can e.g. be used

to devise consistent interpolation formulae within large cells or to restrict/prolong SN solution

in-between different spatial meshes (e.g. energy group dependent meshes).
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Appendix C

Algorithms for the MMS3D

Benchmark Suite

C.1 Semi-Symbolic Algorithms for Manipulation of Polynomi-

als

Within the described work is was frequently necessary to manipulate polynomial expressions

into more convenient forms. This section introduces the algorithms utilized to

1. Obtain the Legendre coefficients, i.e. the p̂ml in Pm(x) =
m∑
l=0

p̂ml x
l.

2. Expand expressions like (ax+ by + cz + d)m.

3. Multiply two polynomials.

Polynomials are represented by their coefficient array which is a three-tupel saving the cl,k,g for

a polynomial f(x, y, z) given by:

f (x, y, z) =
L∑
l=0

K∑
k=0

G∑
g=0

cl,k,gx
lykzg. (C.1)

The utilized algorithm’s only approximation is the finite precision arithmetic used for the com-

putation of the elements comprised in the coefficient array.

1. Legendre polynomial coefficients

The Legendre polynomial coefficients can be computed using Bonnet’s recursion:

(m+ 1)Pm+1(x) = (2m+ 1)xPm(x)−mPm−1(x). (C.2)
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The actually implemented algorithm computing p̂ml for all m ≤ Λ is listed in algorithm 3.

Algorithm 3 Bonnet’s recursion

1: Matrix P consisting of the elements pm,l stores the Legendre coefficients pml .
2: P = 0
3: p0,0 = 1
4: if m > 0 then
5: p1,1 = 1
6: end if
7: for m = 2 to Λ do
8: for l = 0 to m− 2 do
9: pm,l ← pm,l + m−1

m pm−2,l

10: end for
11: for l = 0 to m− 1 do
12: pm,l+1 ← pm,l+1 + 2m−1

m pm−1,l

13: end for
14: end for

2. Expand via Binomial Theorem

By using the binomial theorem repeatedly the expression:

f(x, y, z) = (ax+ by + cz + d)m (C.3)

can be expanded into the standard polynomial form:

(ax+ by + cz + d)m =

m∑
l=0

m∑
k=0

m∑
g=0

cl,k,gx
lykzg, (C.4)

using the algorithm listed in 4.

Algorithm 4 Polynomials Expansion via Binomial Theorem

1: for l = 0 to m do
2: for k = 0 to l do
3: for g = 0 to k do

4: cm−l,l−k,k−g =

(
m
l

)(
l
k

)(
k
g

)
am−lbl−kck−gdg

5: end for
6: end for
7: end for
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3. Multiplication of Polynomials

Let polynomial f1 and f2 be defined as follows:

f1 =

L1∑
l=0

K1∑
k=0

G1∑
g=0

al,k,gx
lykzg

f2 =

L2∑
l=0

K2∑
k=0

G2∑
g=0

bl,k,gx
lykzg. (C.5)

Then let f3

f3 =

L1+L2∑
l=0

K1+K2∑
k=0

G1G2∑
g=0

cl,k,gx
lykzg. (C.6)

be the product of f1 and f2, f3 = f1 ·f2. The algorithm 5 computes the appropriate coefficients

cl,k,g and stores them in the three-tupel C.

Algorithm 5 Multiplication of polynomials

1: C = 0
2: for l = 0 to L1 + L2 do
3: for k = 0 to K1 +K2 do
4: for g = 0 to G1 +G2 do
5: for l1 = max (0, l − L2) to min (l, L1) do
6: l2 = l − l1
7: for k1 = max (0, k −K2) to min (k,K1) do
8: k2 = k − k1

9: for g1 = max (0, g −G2) to min (g,G1) do
10: g2 = g − g1

11: cl,k,g ← cl,k,g + al1,k1,g1bl2,k2,g2 .
12: end for
13: end for
14: end for
15: end for
16: end for
17: end for
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C.2 Integration of 1D Integrals

This section is concerned with evaluating the integral:

eb
∫ θiθ

θiθ−1

dθpmθ (θ) θlθeaθ (C.7)

To this end we make the substitution:

θ = −sign (a) (θiθ − θiθ−1) θ̂ +
1− sign (a)

2
θiθ−1 +

1 + sign (a)

2
θiθ , (C.8)

such that the integral transforms to:

eb
∫ θiθ

θiθ−1

dθpmθ (θ) θlθeaθ = (θiθ − θiθ−1) exp

[
b+ a

(
1− sign (a)

2
θiθ−1 +

1 + sign (a)

2
θiθ

)]
×

∫ 1

0
dθ̂

(
−sign (a) (θiθ − θiθ−1) θ̂ +

1− sign (a)

2
θiθ−1 +

1 + sign (a)

2
θiθ

)lθ
× Pmθ

[
−sign (a)

(
2θ̂ − 1

)]
e(−|a|(θiθ−θiθ−1)θ̂). (C.9)

By first expanding the Legendre polynomials into the sum of monomials:

Pmθ (θ) =

mθ∑
l

P̂mθl θl. (C.10)

and then using the algorithms outlined in section C.1 the integral Eq. C.9 can be transformed

into:

eb
∫ θiθ

θiθ−1

dθpmθ (θ) θlθeaθ =

lθ+mθ∑
k=0

ĉke
b̂I1D
k (â) , (C.11)

with the following definitions:

• ĉk: Polynomial coefficients from algorithms in section C.1.

• b̂ = b+ a
(

1−sign(a)
2 θiθ−1 + 1+sign(a)

2 θiθ

)
• â = |a| (θiθ − θiθ−1)

• I1D
k (â) =

∫ 1
0 θ̂

ke−|â|θ̂.

Thus, the problem of computing the integral in Eq. C.7 can be reduced to computing I1D
k (â)

for k = 0, ..., lθ + mθ. A fast algorithm for computing the I1D
k (â) is to use forward/backward
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recursion:

Ik (â) =


eâ−kIk−1(â)

a k ≤ b|â|c
â
k+1

(
eâ

â − Ik+1 (â)
)

k > b|â|c
(C.12)

which is stable for all values of k and â. For the forward recursion I0 (â) needs to be computed

while for the backward recursion it is necessary to evaluate Ilθ+mθ (â). From numerical exper-

iment we found that for different combinations of k and â different approaches for the direct

numerical evaluation of Ik (â) yield the best accuracy:

Ik (â)←


Taylor Series Expansion |â| ≤ 10

Direct analytical integration |â| > 10, k ≤ 40

Romberg integration |â| > 10, k > 40

Taylor series expansion

The exponential in Ik (â) is expanded into a Taylor series and then the integration is performed:

Ik (â) =
1

(k + 1)
+

L∑
l=1

âl

l! (l + k + 1)︸ ︷︷ ︸
el

, (C.13)

with L such that el < ε and |el−1| > |el|. The latter condition is required since for â > 0 el first

grows with increasing l to some maximum value and then starts decaying.

Direct integration

Ik (â) =
eâ

â

[
k∑
l=0

1

|â|l
k!

(k − l)!

]
+

1

|â|k+1
k!. (C.14)

Romberg integration

The algorithm is listed in algorithm 6. The Romberg integration uses a sequence of nested

meshes starting with a coarse mesh and dividing the mesh width h in half at every refinement

step. Then Richardson iteration is used to extrapolate to finer meshes thus increasing the order

of accuracy at every subdivion step.

C.3 Integration of 2D Integrals

This section is concerned with the computation of integrals of the form given in Eq. 3.38:

eb
∫∫

As

dApmω (ω) pmθ(θ)ω
lωθlθ exp (aθ) . (C.15)
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Algorithm 6 One-dimensional Romberg integration

1: r0,0 = 1
2e
â

2: hl = 2−l

3: g(x) = eâxxk

4: for l = 1 to lmax do

5: rl = 1
2rl−1,0 + hl

2l−1∑
q=1

g ((2q − 1)hl)

6: for q = 1 to l do
7: ri,j = 1

4q−1 (4qrl,q−1 − rl−1,q−1).
8: end for
9: if |rl,l − rl−1,l−1| < ε then

10: Ik (â) = rl,l
11: STOP
12: end if
13: end for

For convenience we apply a change of variables
(
θ̂, ω̂

)
← (θ, ω) onto the unit triangle 0 ≤ ω̂ ≤ 1

and 0 ≤ θ̂ ≤ ω̂ such that the coordinates of the corner points are:

r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T . (C.16)

Let the three corners of the triangle in the (θ, ω) coordinate system be denoted by ~ri with

i = 1, 2, 3, then the transformation from the
(
θ̂, ω̂

)
coordinates to the (θ, ω) coordinates is

given by:

~r = J r̂ + ~d

J = [~r2 − ~r1, ~r3 − ~r2] , ~d = ~r1, (C.17)

where J is the transformation Jacobian comprising the elements ji,j , i, j = 0, 1 and ~d = (d1, d2)

is the offset of the transformation. Applying the transformation Eq. C.17 to the integral Eq.

C.15 the following integral can be obtained:

eb
∫∫

As

dApmω (ω) pmθ(θ)ω
lωθlθ exp (aθ) = |J | exp (b+ ad1)

×
∫ 1

0
dω̂

∫ ω̂

0
dθ̂

[(
j2,1θ̂ + j2,2ω̂ + d2

)lω (
j1,1θ̂ + j1,2ω̂ + d2

)lθ
× Pmω

(
2

∆ωiω

(
j2,1θ̂ + j2,2ω̂ + d2 − ωiω + ωiω−1

))
e−|aj1,2|ω̂

× Pmθ

(
2

∆θiθ

(
j1,1θ̂ + j1,2ω̂ + d1 − θiθ + θiθ−1

))
e−|aj1,1|θ̂

]
(C.18)
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Note that the argument within the exponentials is always negative which can be ensured by

selecting the appropriate numbering of the corners of the original triangle in the (θ, ω) space:

There is a total of three permutation for selecting which corner is associated with ~ri, i = 1, 2, 3;

the first point is selected out of a choice of three and the other two are then numbered counter-

clockwise. One of these permutations yields a transformation such that both aj1,2 < 0, aj1,1 <

0. Using the algorithms in section C.1 the integral Eq. C.18 can be recast in the simpler form:

eb
∫∫

As

dApmω (ω) pmθ(θ)ω
lωθlθ exp (aθ) = |J | eb̂

K∑
kω=0

K∑
kθ=0

ĉkω ,kθI
2D
kω ,kθ

(
âω̂, âθ̂

)
(C.19)

where the following definitions are used:

• K = lθ + lω +mθ +mω

• ĉkω ,kθ : Polynomial coefficients from algorithms in section C.1.

• b̂ = b+ ad1

• âθ̂ = aj1,2

• âω̂ = aj1,1

• I2D
kω ,kθ

(
âω̂, âθ̂

)
=
∫ 1

0 dω̂
∫ ω̂

0 dθ̂ω̂kω θ̂kθe−|âω̂ |ω̂e−|âθ̂|θ̂

Thus, the problem can be reduced to evaluating I2D
l,q (a, b) for l, q = 0, ...,K. For this purpose

a two-dimensional forward-backward recursion is devised since simple forward substitution is

only conditionally stable. The algorithm first computes I2D
0,0 , I2D

K,0, I2D
0,K and I2D

K,K directly via a

method described later, then a sweep in q direction is started for both l = 0 and l = K using

the following prescription:

I2D
l,q (a, b) =


I1D
l+q(a+b)−qI2D

l,q−1

b q ≤ b|b|c
I1D
l+q+1(a+b)−bI2D

l,q+1

q+1 q > b|b|c
for l = 0,K. (C.20)

Subsequently, a sweep is started along the l index:

I2D
l,q (a, b) =


eaI1D

q (b)−lI2D
l−1,q−I

1D
l+q(a+b)

a l ≤ b|a|c
eaI1D

q (b)−aI2D
l+1,q−I

1D
l+q+1(a+b)

l+1 l > b|a|c
for q = 0, ..,K. (C.21)

Finally, we need to be able to directly compute I2D
l,q (a, b) for the first step of the algorithm.

Similar to the one-dimensional integration different combinations of a, b, l and k require different
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approaches to achieve the optimal accuracy:

I2D
l,q (a, b)←



a ≤ 10, b ≤ 10 Taylor series expansion

a > 10, b ≤ 10 Partial Taylor series expansion

a > 10, b ≤ 10 Reformulation

then partial Taylor series expansion

a > 10, b > 10, l ≤ 50, q ≤ 50 Direct analytical integration

a > 10, b > 10, l or q > 50 Numerical integration

(C.22)

(i) Taylor Series Expansion

The exponential in both the ω̂ and the θ̂ variables is expanded into a Taylor series and the

integration is then performed:

I2D
l,q (a, b) =

Kθ̂∑
kθ̂=0

bkθ̂

kθ̂!

Kω̂∑
kω̂=0

[
akω̂

kω̂!

1(
q + kθ̂ + 1

) (
q + kθ̂ + l + kω̂ + 1

)]︸ ︷︷ ︸
ek
θ̂︸ ︷︷ ︸

ek
θ̂

, (C.23)

where Kω̂ is such that ekθ̂ < ε and
∣∣∣ekθ̂ ∣∣∣ < ∣∣∣ekθ̂−1

∣∣∣, i.e. the inner sum is first converged before

the outer index kθ̂ is incremented. The outer sum is truncated once ekω̂ < ε and |ekω̂ | < |ekω̂−1|.

(ii) Partial Taylor Series Expansion

The exponential in θ̂ is expanded into a Taylor series resulting in:

I2D
l,q (a, b) =

K∑
k=0

bk

k!(q + k + 1)

∫ 1

0
dω̂e−|a|ω̂ω̂l+q+k+1

=

K∑
k=0

bk

k!(q + k + 1)
I1D
l+q+k+1 (a)︸ ︷︷ ︸

ek

, (C.24)

where K is chosen such that ek < ε and |ek| < |ek−1|.

274



www.manaraa.com

(iii) Reformulation then Partial Taylor Series Expansion

The following identity holds:

I2D
l,q (a, b) =

∫ 1

0
dω̂

∫ ω̂

0
dθ̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂

=

∫ 1

0
dθ̂

∫ 1

θ̂
dω̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂. (C.25)

Further note that by the additivity of the integration operator the following holds:[∫ 1

0
dω̂ ω̂le−|a|ω̂

] [∫ 1

0
dθ̂ θ̂qe−|b|θ̂

]
=

∫ 1

0
dθ̂

∫ 1

θ̂
dω̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂ +

∫ 1

0
dθ̂

∫ θ̂

0
dω̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂

=

∫ 1

0
dω̂

∫ ω̂

0
dθ̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂ +

∫ 1

0
dθ̂

∫ θ̂

0
dω̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂

⇒
∫ 1

0
dω̂

∫ ω̂

0
dθ̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂

=

[∫ 1

0
dω̂ ω̂le−|a|ω̂

] [∫ 1

0
dθ̂ θ̂qe−|b|θ̂

]
−
∫ 1

0
dθ̂

∫ θ̂

0
dω̂ ω̂lθ̂qe−|a|ω̂e−|b|θ̂ (C.26)

Using short-hand notation we can write:

I2D
l,q (a, b) = I1D

l (a)I1D
q (b)− I2D

q,l (b, a) . (C.27)

Since a ≤ 10 and b > 10 we can now use the method outlined in (ii).

(iv) Direct Analytical Integration

Direct analytical integration results in the following expression:

I2D
l,q (a, b) = I1D

l (a)q!
1

|b|q+1 −
q∑

k=0

1

|b|k+1

q!

(q − k)
I1D
l+q−k(a+ b) (C.28)

(v) Romberg integration via Duffy transform

The Duffy transform is applied resulting in the following integral:

I2D
l,q (a, b) =

∫ 1

0
dω̂

∫ 1

0
dθ̂ ω̂l+q+1θ̂qeaω̂ebθ̂·ω̂. (C.29)

Then the two-dimensional equivalent of the Romberg integration algorithm 6 is applied to the

integral Eq. C.29
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C.4 Integration of 3D Integrals

This section is concerned with evaluating the integral:

eb
∫∫∫
Vs

dV pmν (ν) pmω (ω) pmθ(θ)ν
lνωlωθlθeaθ. (C.30)

For convenience we apply a change of variables
(
θ̂, ω̂, ν̂

)
← (θ, ω, ν) onto the unit tetrahedron

characterized by the corner points:

r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T , r̂4 = (1, 1, 1)T . (C.31)

Let the four corners of the original tetrahedron in the (θ, ω, ν) coordinate system be denoted

by ~ri with i = 1, 2, 3, 4, then the transformation from the
(
θ̂, ω̂, ν̂

)
coordinates to the (θ, ω, ν)

coordinates is given by:

~r = J r̂ + ~d

J = [~r2 − ~r1, ~r3 − ~r2, ~r4 − ~r3] , ~d = ~r1, (C.32)

where J is the transformation Jacobian comprising the elements ji,j , i, j = 1, 2, 3 and ~d =

(d1, d2, d3) is the offset of the transformation. Applying the transformation Eq. C.32 to the

integral Eq. C.29 the following integral can be obtained:

eb
∫∫∫
Vs

dV pmν (ν) pmω (ω) pmθ(θ)ν
lνωlωθlθeaθ

= |J | eb+ad1

∫ 1

0
dν̂

∫ ν̂

0
dω̂

∫ ω̂

0
dθ̂

[(
j3,1θ̂ + j3,2ω̂ + j3,3ν̂ + d3

)lν
×

(
j2,1θ̂ + j2,2ω̂ + j2,3ν̂ + d2

)lω
×

(
j1,1θ̂ + j1,2ω̂ + j1,3ν̂ + d1

)lθ
Pmν

(
2

∆νiν

(
j3,1θ̂ + j3,2ω̂ + j3,3ν̂ + d3 − νiν + νiν−1

))
× e−|aj1,3|ν̂Pmω

(
2

∆ωiω

(
j2,1θ̂ + j2,2ω̂ + j2,3ν̂ + d2 − ωiω + ωiω−1

))
e−|aj1,2|ω̂

× Pmθ

(
2

∆θiθ

(
j1,1θ̂ + j1,2ω̂ + j1,3ν̂ + d1 − θiθ + θiθ−1

))
e−|aj1,1|θ̂

]
(C.33)

Note that the arguments within the exponentials are non-negative. This can be achieved by

finding the suitable permutation of associating a corner point of the original tetrahedron with

the vectors ~ri, i = 1, .., 4. It is guaranteed that out of the 4! = 24 permutations one will yield

a transformation such that (aj1,i) < 0, i = 1, .., 4. Using the algorithms in section C.1 the
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integral C.33 can be reduced to a sum of elementary integrals:

eb̂
∫∫∫
Vs

dV pmν (ν) pmω (ω) pmθ(θ)ν
lνωlωθlθeaθ

= |J | eb̂
K∑

kν=0

K∑
kω=0

K∑
kθ=0

ĉkν ,kω ,kθI
3D
kν ,kω ,kθ

(
âν̂ , âω̂, âθ̂

)
, (C.34)

where the following definitions are used:

• K = lθ + lω + lν +mθ +mω +mν

• ĉkν ,kω ,kθ : Polynomial coefficients from algorithms in section C.1.

• b̂ = b+ ad1

• âθ̂ = aj1,3

• âω̂ = aj1,2

• âν̂ = aj1,1

• I3D
kν ,kω ,kθ

(
âν̂ , âω̂, âθ̂

)
=
∫ 1

0 dν̂
∫ ν̂

0 dω̂
∫ ω̂

0 dθ̂ν̂kν ω̂kω θ̂kθe−|âν̂ |ν̂e−|âω̂ |ω̂e−|âθ̂|θ̂

Thus the problem can be reduced to evaluating the integral I3D
l,q,t (a, b, c) for l, q, t = 0, ...,K.

To this end an unconditionally stable forward/backward recursion is devised which utilizes the

following steps:

• Evaluate I3D
l,q,t (a, b, c) for (l, q, t) = (0/K, 0/K, 0/K) using an algorithm that is going to

be outlined later.

• Perform a forward/backward sweep along t using the following prescription:

I3D
l,q,t =


I2D
l,q+t(a,b+c)−tI

3D
l,q,t−1

c t ≤ b|c|c
I2D
l,q+t+1(a,b+c)−cI3D

l,q,t+1

t+1 t > b|c|c
for l, q = 0,K. (C.35)

• Perform a forward/backward sweep along q using the following prescription:

I3D
l,q,t =


I2D
l+q,t(a+b,c)−I2D

l,q+t(a,b+c)−qI
3D
l,q−1,t

b q ≤ b|b|c
I2D
l+q+1,t(a+b,c)−I2D

l,q+t+1(a,b+c)−bI3D
l,q−1,t

q+1 q > b|b|c
for l = 0,K , t = 0, ...,K. (C.36)
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• Perform a forward/backward sweep along l using the following prescription:

I3D
l,q,t =


eaI2D

q,t (b,c)−I2D
l+q,t(a+b,c)−lI3D

l−1,q,t

a l ≤ b|a|c
eaI2D

q,t (b,c)−I2D
l+q+1,t(a+b,c)−aI3D

l+1,q,t

l+1 l > b|a|c
for q, t = 0, ...,K. (C.37)

Finally for the first step in the forward/backward recursion algorithm the direct evaluation of

I3D
l,q,t needs to be discussed. As for the one and two-dimensional integrals it turns out to be bene-

ficial for the accuracy to utilize different approaches depending on the values of l, q, t, a, b and c:

I3D
l,q,t (a, b, c)←



a, b, c ≤ 10 (i) Taylor series expansion

a > 10, c, c ≤ 10 (ii) Partial Taylor series expansion

b > 10, c ≤ 10 (iii) Partial Taylor series expansion

c > 10 (iv) Analytical Evaluation

(C.38)

(i) Taylor series expansion

The exponentials in ν̂, ω̂ and θ̂ are expanded into a Taylor series and then the integration

is performed analytically:

I3D
l,q,t (a, b, c) =

Kθ∑
iθ=0

ekθ , Kθ s.t. eKθ ≤ ε and |eKθ | − |eKθ−1| < 0

ekθ =

Kω∑
iω=0


Kν∑
iν=0

ckθ

kθ!

bkω

kω!

akν

kν !

1

(kθ + t+ 1) (kθ + t+ kω + q + 2) (kθ + t+ kω + q + kν + l)︸ ︷︷ ︸
ekν


︸ ︷︷ ︸

ekω

Kω s.t. eKω ≤ ε and |eKω | − |eKω−1| < 0

Kν s.t. eKν ≤ ε and |eKν | − |eKν−1| < 0. (C.39)

Note, that the inner loops are converged before the loop index of the outer loop is increased.

(ii) Partial Taylor series expansion

The exponentials in ω̂ and θ̂ are expanded into a Taylor series and then the integration is
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performed analytically:

I3D
l,q,t (a, b, c) =

Kθ∑
kθ=0

Kω∑
kω=0

bkω

kω!

ckθ

kθ!

1

(1 + kθ + t) (2 + kθ + kω + q + t)
I1D
kω+kθ+l+q+t+2 (a)︸ ︷︷ ︸

eω︸ ︷︷ ︸
eθ

Kω s.t. eKω ≤ ε and |eKω | − |eKω−1| < 0

Kθ s.t. eKθ ≤ ε and |eKθ | − |eKθ−1| < 0. (C.40)

(iii) Partial Taylor series expansion

The exponential in the θ̂ variable is expanded into a Taylor Series and the integration is then

performed analytically:

I3D
l,q,t (a, b, c) =

Kθ∑
kθ=0

ckθ

kθ!

1

(kθ + t+ 1)
I2D
l,q+t+kθ+1 (a, b)︸ ︷︷ ︸

ekθ

Kθ s.t. eKθ ≤ ε and |eKθ | − |eKθ−1| < 0. (C.41)

(iv) Analytical evaluation

The inner integral over θ̂ is performed analytically and evaluated at the upper and lower inte-

gration limit:

I3D
l,q,t (a, b, c) =

1

|c|t+1 t!I
2D
l,q (a, b)−

t∑
r=0

1

|c|r+1

t!

(t− r)!
I2D
l,q+t−r (a, b+ c) . (C.42)
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Appendix D

Method Implementation Details

Several Mathematica notebooks of hard-coded low order spatial discretization methods.

D.1 Linear Discontinuous Method

280



www.manaraa.com

LD equations 

Set up the 4 equations for the LD method. These four equations contain face and volume

unknowns. The face unknowns will be removed using the upstreaming 

relations.

In[1]:= Eq1 = Dx Dy Dz
Μ

Dx
HΨE - ΨW L +

Η

Dy
HΨN - ΨSL +

Ξ

Dz
HΨT - ΨBL + Σ Ψa � Dx Dy Dz H SaL;

In[2]:= Eq2 = Dx Dy Dz
Μ

Dx
HΨz - ΨWzL +

Η

Dy
HΨz - ΨSzL +

3 Ξ

Dz
HΨT + ΨB - 2 ΨaL + Σ Ψz �

Dx Dy Dz H SzL;

In[3]:= Eq3 = Dx Dy Dz
Μ

Dx
HΨy - ΨWy L +

3 Η

Dy
HΨN + ΨS - 2 ΨaL +

Ξ

Dz
HΨy - ΨBy L + Σ Ψy �

Dx Dy Dz H Sy L;

In[4]:= Eq4 = Dx Dy Dz
3 Μ

Dx
HΨE + ΨW - 2 Ψa L +

Η

Dy
HΨx - ΨSx L +

Ξ

Dz
HΨx - ΨBx L + Σ Ψx �

Dx Dy Dz HSx L ;

Replace  the  face  fluxes  by  volumetric  flux  moments  using  the  upstream  relations

(backwards). 

In[5]:= repl = 8ΨE ® Ψa + Ψx , ΨN ® Ψa + Ψy , ΨT ® Ψa + Ψz<;

In[6]:= Eq1 = Eq1 �. repl; Eq2 = Eq2 �. repl; Eq3 = Eq3 �. repl; Eq4 = Eq4 �. repl;

Assemble equations into matrix form by using the CoefficientArrays function. 

In[7]:= arr = CoefficientArrays@8Eq1, Eq2, Eq3, Eq4<, 8Ψa, Ψz, Ψy , Ψx <D;

Display the resulting matrix in a matrix format. In order to fit on a single line the matrix

is divided by the volume. Keep in mind that the matrix

that is actually used is V*T.

In[8]:= T = Normal@Simplify @arr @@2DD � HDx Dy DzLDD; T �� MatrixForm

Out[8]//MatrixForm=
Η

Dy
+

Μ

Dx
+

Ξ

Dz
+ Σ

Ξ

Dz

Η

Dy

Μ

Dx

-
3 Ξ

Dz

Η

Dy
+

Μ

Dx
+

3 Ξ

Dz
+ Σ 0 0

-
3 Η

Dy
0

3 Η

Dy
+

Μ

Dx
+

Ξ

Dz
+ Σ 0

-
3 Μ

Dx
0 0

Η

Dy
+

3 Μ

Dx
+

Ξ

Dz
+ Σ

Display the resulting right hand side in a matrix format. Same here regarding division by

the volume. 

Printed by Mathematica for Students
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In[11]:= b = - Normal@Simplify @arr @@1DD � HDx Dy DzLDD; b �� MatrixForm

Out[11]//MatrixForm=

Sa +
Ξ ΨB

Dz
+

Η ΨS

Dy
+

Μ ΨW

Dx

Sz -
3 Ξ ΨB

Dz
+

Η ΨSz

Dy
+

Μ ΨWz

Dx

Sy +
Ξ ΨBy

Dz
-

3 Η ΨS

Dy
+

Μ ΨWy

Dx

Sx +
Ξ ΨBx

Dz
+

Η ΨSx

Dy
-

3 Μ ΨW

Dx

Direct Inversion of linear system of equations.

Instead of using the explicit matrix derived in before, we assign a placeholder for each

non-zero matrix entry and solve the 4x4 linear system

of equations in terms of the placeholders. If we used the expressions derived before the

resulting solution would be too complicated.

In[19]:= T =

a11 a12 a13 a14

- 3 a12 a22 0 0

- 3 a13 0 a33 0

- 3 a14 0 0 a44

; b = 8b1, b2, b3, b4<;

Show the result in matrix form. 

In[20]:= LinearSolve@T, bD �� MatrixForm

Out[20]//MatrixForm=
a22 a33 a44 b1 -a12 a33 a44 b2-a13 a22 a44 b3-a14 a22 a33 b4

3 a142 a22 a33+3 a132 a22 a44+3 a122 a33 a44+a11 a22 a33 a44

3 a12 a33 a44 b1 +3 a142 a33 b2+3 a132 a44 b2+a11 a33 a44 b2-3 a12 a13 a44 b3-3 a12 a14 a33 b4

3 a142 a22 a33+3 a132 a22 a44+3 a122 a33 a44+a11 a22 a33 a44

3 a13 a22 a44 b1 -3 a12 a13 a44 b2+3 a142 a22 b3+3 a122 a44 b3+a11 a22 a44 b3-3 a13 a14 a22 b4

3 a142 a22 a33+3 a132 a22 a44+3 a122 a33 a44+a11 a22 a33 a44

3 a14 a22 a33 b1 -3 a12 a14 a33 b2-3 a13 a14 a22 b3+3 a132 a22 b4+3 a122 a33 b4+a11 a22 a33 b4

3 a142 a22 a33+3 a132 a22 a44+3 a122 a33 a44+a11 a22 a33 a44

2  LD_examination_reduced.nb

Printed by Mathematica for Students
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D.2 Linear Nodal Method
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Formulating and Solving the linear system of equations for the LN equations

Setting up the nodal unknown vector
Ψv = 8Ψ0,0,0 , Ψ0,0,1 , Ψ0,1,0 , Ψ1,0,0 <;

Balance  Relations

These balance relations are divided by Σ and written in dimenionless form by using the

optical thicknesses. 

b1 =

Ψox0,0 - Ψix0,0

tx
+

Ψoy0,0 - Ψiy0,0

ty
+

Ψoz0,0 - Ψiz0,0

tz
+ Ψ0,0,0 ==

S0,0,0

Σ

;

b2 =

Ψox0,1 - Ψix0,1

tx
+

Ψoy0,1 - Ψiy0,1

ty
+ sz

Ψoz0,0 + Ψiz0,0 - 2 Ψ0,0,0

tz
+ Ψ0,0,1 ==

S0,0,1

Σ

;

b3 =

Ψox1,0 - Ψix1,0

tx
+ sy

Ψoy0,0 + Ψiy0,0 - 2 Ψ0,0,0

ty
+

Ψoz0,1 - Ψiz0,1

tz
+ Ψ0,1,0 ==

S0,1,0

Σ

;

b4 = sx
Ψox0,0 + Ψix0,0 - 2 Ψ0,0,0

tx
+

Ψoy1,0 - Ψiy1,0

ty
+

Ψoz1,0 - Ψiz1,0

tz
+ Ψ1,0,0 ==

S1,0,0

Σ

;

balance = 8b1, b2, b3, b4<;

WDDx

Auxiliary equations/WDD equations in x direction. sx is the sign of the direction cosine

w.r.t. x direction. 

wddx1 =

1 + Α0

2
Ψox0,0 +

1 - Α0

2
Ψix0,0 == Ψ0,0,0 + 3 sx Α0 Ψ1,0,0 ;

wddx2 =

1 + Α1

2
Ψox1,0 +

1 - Α1

2
Ψix1,0 == Ψ0,1,0 ;

wddx3 =

1 + Α1

2
Ψox0,1 +

1 - Α1

2
Ψix0,1 == Ψ0,0,1 ;

wddx = 8wddx1, wddx2, wddx3<;

Solve the 3 WDD relations for the three outflow unkowns on the +x face. 

replx = FirstASolveAwddx , 9Ψox0,0 , Ψox1,0 , Ψox0,1 =EE;
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WDDy

Auxiliary equations/WDD equations in y direction. sy is the sign of the direction cosine

w.r.t. y  direction. 

wddy1 =

1 + Β0

2
Ψoy0,0 +

1 - Β0

2
Ψiy0,0 == Ψ0,0,0 + 3 sy Β0 Ψ0,1,0 ;

wddy2 =

1 + Β1

2
Ψoy1,0 +

1 - Β1

2
Ψiy1,0 == Ψ1,0,0 ;

wddy3 =

1 + Β1

2
Ψoy0,1 +

1 - Β1

2
Ψiy0,1 == Ψ0,0,1 ;

wddy = 8wddy1, wddy2, wddy3<;

Solve the 3 WDD relations for the three outflow unkowns on the +y face. 

reply = FirstASolveAwddy , 9Ψoy0,0 , Ψoy1,0 , Ψoy0,1 =EE;

WDDz

Auxiliary equations/WDD equations in z direction. sz is the sign of the direction cosine

w.r.t. z  direction. 

wddz1 =

1 + Γ0

2
Ψoz0,0 +

1 - Γ0

2
Ψiz0,0 == Ψ0,0,0 + 3 sz Γ0 Ψ0,0,1 ;

wddz2 =

1 + Γ1

2
Ψoz1,0 +

1 - Γ1

2
Ψiz1,0 == Ψ1,0,0 ;

wddz3 =

1 + Γ1

2
Ψoz0,1 +

1 - Γ1

2
Ψiz0,1 == Ψ0,1,0 ;

wddz = 8wddz1, wddz2, wddz3<;

Solve the 3 WDD relations for the three outflow unkowns on the +z face. 

replz = FirstASolveAwddz, 9Ψoz0,0 , Ψoz1,0 , Ψoz0,1 =EE;

Replace outflow moments from balance relations

Put the expressions for the outflow flux moments into one vector. 

repl = Join@replx , reply , replzD;

Substute this vector into the balance equations.

balance = balance �. repl;
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Construct the local linear system of equations and show it!

mat = CoefficientArrays@balance, Ψv D;

Normal@mat@@2DDD �� MatrixForm

1 +
2

tx I1 +Α0M +
2

ty I1 +Β0M +
2

tz I1 +Γ0M
6 sz Γ0

tz I1 +Γ0M
6 sy Β0

ty I1 +Β0M

-
2 sz

tz
+

2 sz

tz I1 +Γ0M 1 +
2

tx I1 +Α1M +
2

ty I1 +Β1M +
6 sz2 Γ0

tz I1 +Γ0M 0

-
2 sy

ty
+

2 sy

ty I1 +Β0M 0 1 +
2

tx I1 +Α1M +
6 sy2 Β0

ty I1 +Β0M +
2

tz I1 +Γ1

-
2 sx

tx
+

2 sx

tx I1 +Α0M 0 0

rhs = - Normal@mat@@1DDD; rhs �� MatrixForm

Ψix0 ,0

tx
+

Ψix0 ,0

tx I1 +Α0M -
Α0 Ψix0 ,0

tx I1 +Α0M +
Ψiy0 ,0

ty
+

Ψiy0 ,0

ty I1 +Β0M -
Β0 Ψiy0 ,0

ty I1 +Β0M +
Ψiz0 ,0

tz
+

Ψiz0 ,0

tz I1 +Γ0M -
Γ0 Ψiz0 ,0

tz I1 +Γ0M +
S0 ,0 ,0

Σ

Ψix0 ,1

tx
+

Ψix0 ,1

tx I1 +Α1M -
Α1 Ψix0 ,1

tx I1 +Α1M +
Ψiy0 ,1

ty
+

Ψiy0 ,1

ty I1 +Β1M -
Β1 Ψiy0 ,1

ty I1 +Β1M -
sz Ψiz0 ,0

tz
+

sz Ψiz0 ,0

tz I1 +Γ0M -
sz Γ0 Ψiz0 ,0

tz I1 +Γ0M +
S0 ,0 ,1

Σ

Ψix1 ,0

tx
+

Ψix1 ,0

tx I1 +Α1M -
Α1 Ψix1 ,0

tx I1 +Α1M -
sy Ψiy0 ,0

ty
+

sy Ψiy0 ,0

ty I1 +Β0M -
sy Β0 Ψiy0 ,0

ty I1 +Β0M +
Ψiz0 ,1

tz
+

Ψiz0 ,1

tz I1 +Γ1M -
Γ1 Ψiz0 ,1

tz I1 +Γ1M +
S0 ,1 ,0

Σ

-
sx Ψix0 ,0

tx
+

sx Ψix0 ,0

tx I1 +Α0M -
sx Α0 Ψix0 ,0

tx I1 +Α0M +
Ψiy1 ,0

ty
+

Ψiy1 ,0

ty I1 +Β1M -
Β1 Ψiy1 ,0

ty I1 +Β1M +
Ψiz1 ,0

tz
+

Ψiz1 ,0

tz I1 +Γ1M -
Γ1 Ψiz1 ,0

tz I1 +Γ1M +
S1 ,0 ,0

Σ

Solve 4 x4 system of equations

A =

a11 a12 a13 a14

a21 a22 0 0

a31 0 a33 0

a41 0 0 a44

; rv = 8rhs1, rhs2, rhs3, rhs4<;

xv = LinearSolve@A , rv D;

Simplify @xv @@1DDD
Ha12 a33 a44 rhs2 + a22 H- a33 a44 rhs1 + a13 a44 rhs3 + a14 a33 rhs4LL �

Ha14 a22 a33 a41 + Ha13 a22 a31 + a12 a21 a33 - a11 a22 a33L a44L

Simplify @xv @@2DDD
Ha21 a33 a44 rhs1 + a14 a33 a41 rhs2 +

a13 a31 a44 rhs2 - a11 a33 a44 rhs2 - a13 a21 a44 rhs3 - a14 a21 a33 rhs4L �
Ha14 a22 a33 a41 + a13 a22 a31 a44 + a12 a21 a33 a44 - a11 a22 a33 a44L

Simplify @xv @@3DDD
Ha12 a44 H- a31 rhs2 + a21 rhs3L +

a22 Ha31 a44 rhs1 + a14 a41 rhs3 - a11 a44 rhs3 - a14 a31 rhs4LL �
Ha14 a22 a33 a41 + Ha13 a22 a31 + a12 a21 a33 - a11 a22 a33L a44L

Simplify @xv @@4DDD
Ha12 a33 H- a41 rhs2 + a21 rhs4L +

a22 Ha33 a41 rhs1 - a13 a41 rhs3 + a13 a31 rhs4 - a11 a33 rhs4LL �
Ha14 a22 a33 a41 + Ha13 a22 a31 + a12 a21 a33 - a11 a22 a33L a44L
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Compute outflow face fluxes

In this last step the upstreaming expressions are derived. It basically uses the expres-
sions obtained when the WDD equations are

solved for the outflow face moments:

Ψox0,0 = Ψox0,0 �. replx

- Ψix0,0 + Α0 Ψix0,0 + 2 Ψ0,0,0 + 6 sx Α0 Ψ1,0,0

1 + Α0

Ψox0,1 = Ψox0,1 �. replx

- Ψix0,1 + Α1 Ψix0,1 + 2 Ψ0,0,1

1 + Α1

Ψox1,0 = Ψox1,0 �. replx

- Ψix1,0 + Α1 Ψix1,0 + 2 Ψ0,1,0

1 + Α1

Ψoy0,0 = Ψoy0,0 �. reply

- Ψiy0,0 + Β0 Ψiy0,0 + 2 Ψ0,0,0 + 6 sy Β0 Ψ0,1,0

1 + Β0

Ψoy0,1 = Ψoy0,1 �. reply

- Ψiy0,1 + Β1 Ψiy0,1 + 2 Ψ0,0,1

1 + Β1

Ψoy1,0 = Ψoy1,0 �. reply

- Ψiy1,0 + Β1 Ψiy1,0 + 2 Ψ1,0,0

1 + Β1

Ψoz0,0 = Ψoz0,0 �. replz

- Ψiz0,0 + Γ0 Ψiz0,0 + 2 Ψ0,0,0 + 6 sz Γ0 Ψ0,0,1

1 + Γ0

Ψoz0,1 = Ψoz0,1 �. replz

- Ψiz0,1 + Γ1 Ψiz0,1 + 2 Ψ0,1,0

1 + Γ1

Ψoz1,0 = Ψoz1,0 �. replz

- Ψiz1,0 + Γ1 Ψiz1,0 + 2 Ψ1,0,0

1 + Γ1

4  LN_showcase.nb
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Formulating and Solving the linear system of equations for the LL equations

Setting up the nodal unknown vector
In[1]:= Ψv = 8Ψ0,0,0 , Ψ0,0,1 , Ψ0,1,0 , Ψ1,0,0 <;

Balance  Relations

These balance relations are divided by Σ and written in dimenionless form by using the

optical thicknesses. 

In[2]:= b1 =

Ψox0,0 - Ψix0,0

tx
+

Ψoy0,0 - Ψiy0,0

ty
+

Ψoz0,0 - Ψiz0,0

tz
+ Ψ0,0,0 ==

S0,0,0

Σ

;

In[3]:= b2 =

Ψox0,1 - Ψix0,1

tx
+

Ψoy0,1 - Ψiy0,1

ty
+ sz

Ψoz0,0 + Ψiz0,0 - 2 Ψ0,0,0

tz
+ Ψ0,0,1 ==

S0,0,1

Σ

;

In[4]:= b3 =

Ψox1,0 - Ψix1,0

tx
+ sy

Ψoy0,0 + Ψiy0,0 - 2 Ψ0,0,0

ty
+

Ψoz0,1 - Ψiz0,1

tz
+ Ψ0,1,0 ==

S0,1,0

Σ

;

In[5]:= b4 = sx
Ψox0,0 + Ψix0,0 - 2 Ψ0,0,0

tx
+

Ψoy1,0 - Ψiy1,0

ty
+

Ψoz1,0 - Ψiz1,0

tz
+ Ψ1,0,0 ==

S1,0,0

Σ

;

In[6]:= balance = 8b1, b2, b3, b4<;

WDDx

Auxiliary equations/WDD equations in x direction. sx is the sign of the direction cosine

w.r.t. x direction. 

In[7]:= wddx1 =

1 + Α0

2
Ψox0,0 +

1 - Α0

2
Ψix0,0 == Ψ0,0,0 + 3 sx Α0 Ψ1,0,0 ;

In[8]:= wddx2 =

1 + Α1

2
Ψox1,0 +

1 - Α1

2
Ψix1,0 == Ψ0,1,0 -

3 sx Α1

sy ty
IΨoy1,0 + Ψiy1,0 - 2 Ψ1,0,0 M;

In[9]:= wddx3 =

1 + Α1

2
Ψox0,1 +

1 - Α1

2
Ψix0,1 == Ψ0,0,1 -

3 sx Α1

sz tz
IΨoz1,0 + Ψiz1,0 - 2 Ψ1,0,0 M;

In[10]:= wddx = 8wddx1, wddx2, wddx3<;

WDDy

Auxiliary equations/WDD equations in z direction. sy is the sign of the direction cosine

w.r.t. y direction. 
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Auxiliary equations/WDD equations in z direction. sy is the sign of the direction cosine

w.r.t. y direction. 

In[11]:= wddy1 =

1 + Β0

2
Ψoy0,0 +

1 - Β0

2
Ψiy0,0 == Ψ0,0,0 + 3 sy Β0 Ψ0,1,0 ;

In[12]:= wddy2 =

1 + Β1

2
Ψoy1,0 +

1 - Β1

2
Ψiy1,0 == Ψ1,0,0 -

3 sy Β1

sx tx
IΨox1,0 + Ψix1,0 - 2 Ψ0,1,0 M;

In[13]:= wddy3 =

1 + Β1

2
Ψoy0,1 +

1 - Β1

2
Ψiy0,1 == Ψ0,0,1 -

3 sy Β1

sz tz
IΨoz0,1 + Ψiz0,1 - 2 Ψ0,1,0 M;

In[14]:= wddy = 8wddy1, wddy2, wddy3<;

WDDz

Auxiliary equations/WDD equations in z direction. sz is the sign of the direction cosine

w.r.t. z direction. 

In[15]:= wddz1 =

1 + Γ0

2
Ψoz0,0 +

1 - Γ0

2
Ψiz0,0 == Ψ0,0,0 + 3 sz Γ0 Ψ0,0,1 ;

In[16]:= wddz2 =

1 + Γ1

2
Ψoz1,0 +

1 - Γ1

2
Ψiz1,0 == Ψ1,0,0 -

3 sz Γ1

sx tx
IΨox0,1 + Ψix0,1 - 2 Ψ0,0,1 M;

In[17]:= wddz3 =

1 + Γ1

2
Ψoz0,1 +

1 - Γ1

2
Ψiz0,1 == Ψ0,1,0 -

3 sz Γ1

sy ty
IΨoy0,1 + Ψiy0,1 - 2 Ψ0,0,1 M;

In[18]:= wddz = 8wddz1, wddz2, wddz3<;

Solve WDD relations for outflow moments

Collect all the 0-0 wDD equations into wdd1. The 0 - 0 equations can be solved indepen-
dently. 

In[19]:= wdd1 = 8wddx1, wddy1, wddz1<;

In[20]:= repl1 = FirstASolveAwdd1, 9Ψox0,0 , Ψoy0,0 , Ψoz0,0 =EE;

Solve the six remaining WDD equations.

In[21]:= wdd2 = 8wddx2, wddx3, wddy2, wddy3, wddz2, wddz3<;

In[22]:= repl2 = FirstASolveAwdd2, 9Ψox0,1 , Ψox1,0 , Ψoy0,1 , Ψoy1,0 , Ψoz0,1 , Ψoz1,0 =EE;

Replace outflow moments from balance relations
In[23]:= repl = Join@repl1, repl2D;

In[24]:= balance = balance �. repl;

2  LL_showcase.nb
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In[25]:= balance �� MatrixForm ;

In[26]:= mat = Simplify @CoefficientArrays@balance, Ψv DD;

In[27]:= TT = Normal@mat@@2DDD; H* TT��MatrixForm *L

Show pattern in Matrix Plot:

In[28]:= MatrixPlot@TT, ColorFunction ® MonochromeD

Out[28]=

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

The LL matrix is full. 

In[29]:= rhs = - Normal@mat@@1DDD; H* rhs��MatrixForm *L

Solve 4 x4 system of equations

For LL the local matrix is full! 

In[30]:= A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

; rv = 8rhs1, rhs2, rhs3, rhs4<;

In[31]:= xv = LinearSolve@A , rv D;

LL_showcase.nb   3

Printed by Mathematica for Students

291



www.manaraa.com

In[32]:= Simplify @xv @@1DDD
Out[32]= H- a22 a34 a43 rhs1 + a22 a33 a44 rhs1 + a14 a33 a42 rhs2 - a13 a34 a42 rhs2 - a14 a32 a43 rhs2 +

a12 a34 a43 rhs2 + a13 a32 a44 rhs2 - a12 a33 a44 rhs2 + a14 a22 a43 rhs3 -

a13 a22 a44 rhs3 - a14 a22 a33 rhs4 + a13 a22 a34 rhs4 + a24 H- a33 a42 rhs1 +

a32 a43 rhs1 + a13 a42 rhs3 - a12 a43 rhs3 - a13 a32 rhs4 + a12 a33 rhs4L + a23

Ha34 a42 rhs1 - a32 a44 rhs1 - a14 a42 rhs3 + a12 a44 rhs3 + a14 a32 rhs4 - a12 a34 rhs4LL �
Ha12 a24 a33 a41 - a12 a23 a34 a41 - a11 a24 a33 a42 + a11 a23 a34 a42 -

a12 a24 a31 a43 + a11 a24 a32 a43 + a12 a21 a34 a43 - a11 a22 a34 a43 +

a14 Ha23 a32 a41 - a22 a33 a41 - a23 a31 a42 + a21 a33 a42 + a22 a31 a43 - a21 a32 a43L +

a12 a23 a31 a44 - a11 a23 a32 a44 - a12 a21 a33 a44 + a11 a22 a33 a44 +

a13 H- a24 a32 a41 + a22 a34 a41 + a24 a31 a42 - a21 a34 a42 - a22 a31 a44 + a21 a32 a44LL

In[33]:= Simplify @xv @@2DDD
Out[33]= Ha21 a34 a43 rhs1 - a21 a33 a44 rhs1 - a14 a33 a41 rhs2 + a13 a34 a41 rhs2 +

a14 a31 a43 rhs2 - a11 a34 a43 rhs2 - a13 a31 a44 rhs2 + a11 a33 a44 rhs2 -

a14 a21 a43 rhs3 + a13 a21 a44 rhs3 + a14 a21 a33 rhs4 - a13 a21 a34 rhs4 + a24

Ha33 a41 rhs1 - a31 a43 rhs1 - a13 a41 rhs3 + a11 a43 rhs3 + a13 a31 rhs4 - a11 a33 rhs4L +

a23 H- a34 a41 rhs1 + a31 a44 rhs1 + a14 a41 rhs3 -

a11 a44 rhs3 - a14 a31 rhs4 + a11 a34 rhs4LL �
Ha12 a24 a33 a41 - a12 a23 a34 a41 - a11 a24 a33 a42 + a11 a23 a34 a42 -

a12 a24 a31 a43 + a11 a24 a32 a43 + a12 a21 a34 a43 - a11 a22 a34 a43 +

a14 Ha23 a32 a41 - a22 a33 a41 - a23 a31 a42 + a21 a33 a42 + a22 a31 a43 - a21 a32 a43L +

a12 a23 a31 a44 - a11 a23 a32 a44 - a12 a21 a33 a44 + a11 a22 a33 a44 +

a13 H- a24 a32 a41 + a22 a34 a41 + a24 a31 a42 - a21 a34 a42 - a22 a31 a44 + a21 a32 a44LL

In[34]:= Simplify @xv @@3DDD
Out[34]= H- a21 a34 a42 rhs1 + a21 a32 a44 rhs1 + a14 a32 a41 rhs2 - a12 a34 a41 rhs2 - a14 a31 a42 rhs2 +

a11 a34 a42 rhs2 + a12 a31 a44 rhs2 - a11 a32 a44 rhs2 + a14 a21 a42 rhs3 -

a12 a21 a44 rhs3 - a14 a21 a32 rhs4 + a12 a21 a34 rhs4 + a24 H- a32 a41 rhs1 +

a31 a42 rhs1 + a12 a41 rhs3 - a11 a42 rhs3 - a12 a31 rhs4 + a11 a32 rhs4L + a22

Ha34 a41 rhs1 - a31 a44 rhs1 - a14 a41 rhs3 + a11 a44 rhs3 + a14 a31 rhs4 - a11 a34 rhs4LL �
Ha12 a24 a33 a41 - a12 a23 a34 a41 - a11 a24 a33 a42 + a11 a23 a34 a42 -

a12 a24 a31 a43 + a11 a24 a32 a43 + a12 a21 a34 a43 - a11 a22 a34 a43 +

a14 Ha23 a32 a41 - a22 a33 a41 - a23 a31 a42 + a21 a33 a42 + a22 a31 a43 - a21 a32 a43L +

a12 a23 a31 a44 - a11 a23 a32 a44 - a12 a21 a33 a44 + a11 a22 a33 a44 +

a13 H- a24 a32 a41 + a22 a34 a41 + a24 a31 a42 - a21 a34 a42 - a22 a31 a44 + a21 a32 a44LL
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In[35]:= Simplify @xv @@4DDD
Out[35]= Ha21 a33 a42 rhs1 - a21 a32 a43 rhs1 - a13 a32 a41 rhs2 + a12 a33 a41 rhs2 +

a13 a31 a42 rhs2 - a11 a33 a42 rhs2 - a12 a31 a43 rhs2 + a11 a32 a43 rhs2 -

a13 a21 a42 rhs3 + a12 a21 a43 rhs3 + a13 a21 a32 rhs4 - a12 a21 a33 rhs4 + a23

Ha32 a41 rhs1 - a31 a42 rhs1 - a12 a41 rhs3 + a11 a42 rhs3 + a12 a31 rhs4 - a11 a32 rhs4L +

a22 H- a33 a41 rhs1 + a31 a43 rhs1 + a13 a41 rhs3 -

a11 a43 rhs3 - a13 a31 rhs4 + a11 a33 rhs4LL �
Ha12 a24 a33 a41 - a12 a23 a34 a41 - a11 a24 a33 a42 + a11 a23 a34 a42 -

a12 a24 a31 a43 + a11 a24 a32 a43 + a12 a21 a34 a43 - a11 a22 a34 a43 +

a14 Ha23 a32 a41 - a22 a33 a41 - a23 a31 a42 + a21 a33 a42 + a22 a31 a43 - a21 a32 a43L +

a12 a23 a31 a44 - a11 a23 a32 a44 - a12 a21 a33 a44 + a11 a22 a33 a44 +

a13 H- a24 a32 a41 + a22 a34 a41 + a24 a31 a42 - a21 a34 a42 - a22 a31 a44 + a21 a32 a44LL

Compute outflow

The last step is to compute the outflow. The repl vector is used which stores the outflow

angular flux moments in terms of volume moments and inflow face moments. 

In[36]:= Ψox0,0 = Ψox0,0 �. repl; FullSimplify AΨox0,0 E

Out[36]=
H-1 + Α0L Ψix0,0 + 2 Ψ0,0,0 + 6 sx Α0 Ψ1,0,0

1 + Α0

In[37]:= Ψox0,1 = Ψox0,1 �. repl; CollectAΨox0,1 , 9Ψix0,1 , Ψiz1,0 , Ψ0,0,1 , Ψ1,0,0 =, Simplify E

Out[37]=
H-tx tz H1 + Γ1 L + Α1 Htx tz + H36 + tx tzL Γ1 LL Ψix0,1

tx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 L
-

12 sx tx Α1 Γ1 Ψiz1,0

sz Htx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 LL
+

2 Htx tz + Htx tz - 36 Α1 L Γ1 L Ψ0,0,1

tx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 L
+

12 sx tx Α1 Γ1 Ψ1,0,0

sz Htx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 LL

In[38]:= Ψox1,0 = Ψox1,0 �. repl; CollectAΨox1,0 , 9Ψix1,0 , Ψiy1,0 , Ψ0,0,1 , Ψ0,1,0 =, Simplify E

Out[38]=
H-tx ty H1 + Β1 L + Α1 Htx ty + H36 + tx ty L Β1 LL Ψix1,0

tx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 L
-

12 sx tx Α1 Β1 Ψiy1,0

sy Htx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 LL
+

2 Htx ty + Htx ty - 36 Α1 L Β1 L Ψ0,1,0

tx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 L
+

12 sx tx Α1 Β1 Ψ1,0,0

sy Htx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 LL

LL_showcase.nb   5
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In[39]:= Ψoy0,0 = Ψoy0,0 �. repl; Simplify AΨoy0,0 E

Out[39]=
H-1 + Β0L Ψiy0,0 + 2 HΨ0,0,0 + 3 sy Β0 Ψ0,1,0L

1 + Β0

In[40]:= Ψoy0,1 = Ψoy0,1 �. repl; CollectAΨoy0,1 , 9Ψiy0,1 , Ψiy0,1 , Ψ0,1,0 , Ψ0,0,1 =, Simplify E

Out[40]=
H-ty tz H1 + Γ1 L + Β1 Hty tz + H36 + ty tzL Γ1 LL Ψiy0,1

ty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 L
-

12 sy ty Β1 Γ1 Ψiz0,1

sz Hty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 LL
+

2 Hty tz + Hty tz - 36 Β1 L Γ1 L Ψ0,0,1

ty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 L
+

12 sy ty Β1 Γ1 Ψ0,1,0

sz Hty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 LL

In[41]:= Ψoy1,0 = Ψoy1,0 �. repl; CollectAΨoy1,0 , 9Ψiy1,0 , Ψix1,0 , Ψ0,1,0 , Ψ1,0,0 =, FullSimplify E

Out[41]= -
12 sy ty Α1 Β1 Ψix1,0

sx tx ty H1 + Β1 L + sx Α1 Htx ty + H-36 + tx ty L Β1 L
+

H-tx ty H1 + Α1 L + Htx ty + H36 + tx ty L Α1 L Β1 L Ψiy1,0

tx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 L
+

12 sy ty Α1 Β1 Ψ0,1,0

sx tx ty H1 + Β1 L + sx Α1 Htx ty + H-36 + tx ty L Β1 L
+

2 Htx ty + Α1 Htx ty - 36 Β1 LL Ψ1,0,0

tx ty H1 + Β1 L + Α1 Htx ty + H-36 + tx ty L Β1 L

In[42]:= Ψoz0,0 = Ψoz0,0 �. repl; FullSimplify AΨoz0,0 E

Out[42]=
H-1 + Γ0L Ψiz0,0 + 2 Ψ0,0,0 + 6 sz Γ0 Ψ0,0,1

1 + Γ0

In[43]:= Ψoz0,1 = Ψoz0,1 �. repl; CollectAΨoz0,1 , 9Ψiz0,1 , Ψiy0,1 , Ψ0,1,0 , Ψ0,0,1 =, Simplify E

Out[43]= -
12 sz tz Β1 Γ1 Ψiy0,1

sy Hty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 LL
+

Hty tz H-1 + Γ1 L + Β1 H-ty tz + H36 + ty tzL Γ1 LL Ψiz0,1

ty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 L
+

12 sz tz Β1 Γ1 Ψ0,0,1

sy Hty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 LL
+

2 Hty tz + Β1 Hty tz - 36 Γ1 LL Ψ0,1,0

ty tz H1 + Γ1 L + Β1 Hty tz + H-36 + ty tzL Γ1 L

6  LL_showcase.nb
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In[44]:= Ψoz1,0 = Ψoz1,0 �. repl; CollectAΨoz1,0 , 9Ψiz1,0 , Ψix0,1 , Ψ1,0,0 , Ψ0,0,1 =, Simplify E

Out[44]= -
12 sz tz Α1 Γ1 Ψix0,1

sx Htx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 LL
+

Htx tz H-1 + Γ1 L + Α1 H-tx tz + H36 + tx tzL Γ1 LL Ψiz1,0

tx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 L
+

12 sz tz Α1 Γ1 Ψ0,0,1

sx Htx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 LL
+

2 Htx tz + Α1 Htx tz - 36 Γ1 LL Ψ1,0,0

tx tz H1 + Γ1 L + Α1 Htx tz + H-36 + tx tzL Γ1 L

LL_showcase.nb   7
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D.4 AHOTN-1* Method
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AHOTN equations

The AHOTN equations consist of two separate sets of equations, the balance equations

and the auxiliary relations. Also, there are two separate sets of

variables:  the volume moments and the outflow face flux moments.  The goal  of  this

notebook is to derive an expression for the AHOTN local matrix T 

obtained by substituting expressions for the outflow face fluxes from the auxiliary equa-
tions into the balance equations. This system of equations is

solved by dgesv for the volumetric flux moments.  

Set the expansion order: 

In[1]:= L = 1;

Vectors of unknowns
In[2]:= Ψ = Flatten@Table@Φjx,jy,jz , 8jx , 0, L <, 8jy , 0, L <, 8jz, 0, L <DD;

H* Volume Flux Moments*L
In[3]:= Ψx = FlattenATableAΦxjy,jz , 8jy , 0, L <, 8jz, 0, L <EE;

H* Outflow Flux Moments at +x face*L
In[4]:= Ψy = FlattenATableAΦyjx,jz , 8jx , 0, L <, 8jz, 0, L <EE;

In[5]:= Ψz = FlattenATableAΦzjx,jy , 8jx , 0, L <, 8jy , 0, L <EE;

In[6]:= Ψxm = FlattenATableAΦxmjy,jz , 8jy , 0, L <, 8jz, 0, L <EE;

H* Inflow Flux Moments at -x face*L
In[7]:= Ψym = FlattenATableAΦymjx,jz , 8jx , 0, L <, 8jz, 0, L <EE;

In[8]:= Ψzm = FlattenATableAΦzmjx,jy , 8jx , 0, L <, 8jy , 0, L <EE;
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Formulate balance equations of order L

In[9]:= balance = FlattenBTableB HSign@ΜDLjx

Abs@tx D Φxjy,jz +

ISignAΗEMjy

Abs@ty D Φyjx,jz +

ISignAΞ EMjz

Abs@tzD Φzjx,jy +

-

2

tx
â

l =0

FloorAIjx -1M� 2E H2 jx - 4 l - 1L Φjx -I2 l +1M,jy,jz

-

2

ty
â

l =0

FloorAIjy -1M� 2E H2 jy - 4 l - 1L Φjx,jy -I2 l +1M,jz

-

2

tz
â

l =0

FloorAIjz -1M� 2E H2 jz - 4 l - 1L Φjx,jy,jz -I2 l +1M

+ Φjx,jy,jz � Sjx,jy,jz +

H-1Ljx HSign@ΜDLjx

Abs@tx D Φxmjy,jz +

H-1Ljy ISignAΗEMjy

Abs@ty D Φymjx,jz +

H-1Ljz ISignAΞ EMjz

Abs@tzD Φzmjx,jy , 8jx , 0, L <, 8jy , 0, L <, 8jz, 0, L <FF;

Formulate WDD equations

� In x - direction

In[10]:= WDDx = FlattenBTableB 1 + Abs@Αx D
2

Φxjy,jz -

Sum @H2 jx + 1L Φjx,jy,jz , 8jx , 0, L , 2<D -

Sum @H2 jx + 1L Sign@ΜD Abs@Αx D Φjx,jy,jz , 8jx , 1, L , 2<D
� -

1 - Abs@Αx D
2

Φxmjy,jz , 8jy , 0, L <, 8jz, 0, L <FF;

� In y - direction

In[11]:= WDDy = FlattenBTableB 1 + Abs@Αy D
2

Φyjx,jz -

Sum @H2 jy + 1L Φjx,jy,jz , 8jy , 0, L , 2<D -

Sum AH2 jy + 1L SignAΗE Abs@Αy D Φjx,jy,jz , 8jy , 1, L , 2<E
� -

1 - Abs@Αy D
2

Φymjx,jz , 8jx , 0, L <, 8jz, 0, L <FF;

2  AHOTN-Equations.nb
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� In z - direction

In[12]:= WDDz = FlattenBTableB 1 + Abs@ΑzD
2

Φzjx,jy -

Sum @H2 jz + 1L Φjx,jy,jz , 8jz, 0, L , 2<D -

Sum AH2 jz + 1L SignAΞ E Abs@ΑzD Φjx,jy,jz , 8jz, 1, L , 2<E
� -

1 - Abs@ΑzD
2

Φzmjx,jy , 8jx , 0, L <, 8jy , 0, L <FF;

Solve WDD for the outflow moments and replace in balance equations.  

In[13]:= replx = First@ Solve@WDDx , Ψx DD;

In[14]:= reply = First@ Solve@WDDy , Ψy DD;

In[15]:= replz = First@ Solve@WDDz, ΨzDD;

Replace outflow unknowns in Balance and collect 
matrix T
In[16]:= newbalance = balance �. Join@replx , reply , replzD;

In[17]:= T = Normal@CoefficientArrays@newbalance, Ψ D@@2DDD;

The matrix T (rotated 90deg)

In[18]:= H* Rotate@Simplify @TD��MatrixForm ,Π �2D*L
The corresponding rhs: 

In[19]:= rhs = Normal@CoefficientArrays@newbalance, Ψ D@@1DDD;

In[20]:= H* Rotate@Simplify @rhs��MatrixForm D,Π �2D*L

AHOTN-Equations.nb   3

Printed by Mathematica for Students

299



www.manaraa.com

Relations to obtain the Outflow given the inflow
In[21]:= MatrixForm @Join@replx , reply , replzDD
Out[21]//MatrixForm=

Φx0,0 ®
-Φxm0 ,0 +Abs@ΑxD Φxm0 ,0 +2 Φ0 ,0 ,0 +6 Abs@ΑxD Sign@ΜD Φ1 ,0 ,0

1 +Abs@ΑxD

Φx0,1 ®
-Φxm0 ,1 +Abs@ΑxD Φxm0 ,1 +2 Φ0 ,0 ,1 +6 Abs@ΑxD Sign@ΜD Φ1 ,0 ,1

1 +Abs@ΑxD

Φx1,0 ®
-Φxm1 ,0 +Abs@ΑxD Φxm1 ,0 +2 Φ0 ,1 ,0 +6 Abs@ΑxD Sign@ΜD Φ1 ,1 ,0

1 +Abs@ΑxD

Φx1,1 ®
-Φxm1 ,1 +Abs@ΑxD Φxm1 ,1 +2 Φ0 ,1 ,1 +6 Abs@ΑxD Sign@ΜD Φ1 ,1 ,1

1 +Abs@ΑxD

Φy0,0 ®
-Φym0 ,0 +Abs@ΑyD Φym0 ,0 +2 Φ0 ,0 ,0 +6 Abs@ΑyD Sign@ΗD Φ0 ,1 ,0

1 +Abs@ΑyD

Φy0,1 ®
-Φym0 ,1 +Abs@ΑyD Φym0 ,1 +2 Φ0 ,0 ,1 +6 Abs@ΑyD Sign@ΗD Φ0 ,1 ,1

1 +Abs@ΑyD

Φy1,0 ®
-Φym1 ,0 +Abs@ΑyD Φym1 ,0 +2 Φ1 ,0 ,0 +6 Abs@ΑyD Sign@ΗD Φ1 ,1 ,0

1 +Abs@ΑyD

Φy1,1 ®
-Φym1 ,1 +Abs@ΑyD Φym1 ,1 +2 Φ1 ,0 ,1 +6 Abs@ΑyD Sign@ΗD Φ1 ,1 ,1

1 +Abs@ΑyD

Φz0,0 ®
-Φzm0 ,0 +Abs@ΑzD Φzm0 ,0 +2 Φ0 ,0 ,0 +6 Abs@ΑzD SignAΞE Φ0 ,0 ,1

1 +Abs@ΑzD

Φz0,1 ®
-Φzm0 ,1 +Abs@ΑzD Φzm0 ,1 +2 Φ0 ,1 ,0 +6 Abs@ΑzD SignAΞE Φ0 ,1 ,1

1 +Abs@ΑzD

Φz1,0 ®
-Φzm1 ,0 +Abs@ΑzD Φzm1 ,0 +2 Φ1 ,0 ,0 +6 Abs@ΑzD SignAΞE Φ1 ,0 ,1

1 +Abs@ΑzD

Φz1,1 ®
-Φzm1 ,1 +Abs@ΑzD Φzm1 ,1 +2 Φ1 ,1 ,0 +6 Abs@ΑzD SignAΞE Φ1 ,1 ,1

1 +Abs@ΑzD

4  AHOTN-Equations.nb
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Appendix E

Mathematica Scripts Pertaining to

Method’s Diffusion Limit

Several Mathematica notebooks for checking if the HODD-1, DD, AHOTN-1, LL and LN

methods possess the diffusion limit.

E.1 HODD-1 Method
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HODD - 1 Thick diffusion Limit

Construction of B matrix
ncells = 4; dofpc = 8;

size = ncells3
* dofpc;

column@ix_ , iy_ , iz_ , mx_ , my_ , mz_ D =

I ix + ncells * Hiy - 1L + ncells2
* Hiz - 1L - 1M * dofpc + mz + 1 + my * 2 + mx * 4 ;

mat = Table@0, 8row , 1, size<, 8col, 1, size<D;

DoA row =

I ix + ncells * Hiy - 1L + ncells2
* Hiz - 1L - 1M * dofpc + mz + 1 + my * 2 + mx * 4 ;

H* **** sx contributions **** *L
If@mx � 0 ,

H* mx �0*L mat@@row , row DD = mat@@row , row DD + 1;,

H* mx ¹0*L Do@mat@@row , column@ix - l, iy , iz, mx , my , mzDDD =

mat@@row , column@ix - l, iy , iz, mx , my , mzDDD + 1, 8l, 1, ix - 1<D ;

Do@mat@@row , column@ix + l, iy , iz, mx , my , mzDDD =

mat@@row , column@ix + l, iy , iz, mx , my , mzDDD - 1, 8l, 1, ncells - ix <D; D;

H* **** sy contributions **** *L
If@my � 0 ,

H* my �0*L mat@@row , row DD = mat@@row , row DD + 1;,

H* my ¹0*L Do@mat@@row , column@ix , iy - l, iz, mx , my , mzDDD =

mat@@row , column@ix , iy - l, iz, mx , my , mzDDD + 1, 8l, 1, iy - 1<D ;

Do@mat@@row , column@ix , iy + l, iz, mx , my , mzDDD =

mat@@row , column@ix , iy + l, iz, mx , my , mzDDD - 1, 8l, 1, ncells - iy <D; D;

H* **** sz contributions **** *L
If@mz � 0 ,

H* my �0*L mat@@row , row DD = mat@@row , row DD + 1;,

H* my ¹0*L Do@mat@@row , column@ix , iy , iz - l, mx , my , mzDDD =

mat@@row , column@ix , iy , iz - l, mx , my , mzDDD + 1, 8l, 1, iz - 1<D ;

Do@mat@@row , column@ix , iy , iz + l, mx , my , mzDDD =

mat@@row , column@ix , iy , iz + l, mx , my , mzDDD - 1, 8l, 1, ncells - iz<D; D;

, 8iz, 1, ncells<, 8iy , 1, ncells<, 8ix , 1, ncells<, 8mx , 0, 1<, 8my , 0, 1<, 8mz, 0, 1<E;
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MatrixPlot@mat, ColorFunction ® "Monochrome"D

1 200 400 512

1

200

400

512

1 200 400 512

1

200

400

512

MatrixRank@matD
512

2  hodd1.nb
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E.2 Diamond Difference Method
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DD - Construction of B matrix in three-dimensional geometry

Three Spatial Dimensions
n = 4;

M = TableA0, 9i, 1, n 3=, 9j, 1, n 3=E;

Do A
row = ix + Hiy - 1L * n + Hiz - 1L n 2;

M @@row , row DD = 1;

DoAcol = Hix - pL + Hiy - 1L * n + Hiz - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, ix - 1<E;

DoAcol = Hix + pL + Hiy - 1L * n + Hiz - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, n - ix <E;

DoAcol = Hix L + HHiy - pL - 1L * n + Hiz - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, iy - 1<E;

DoAcol = Hix L + HHiy + pL - 1L * n + Hiz - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, n - iy <E;

DoAcol = Hix L + HHiy L - 1L * n + HHiz - pL - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, iz - 1<E;

DoAcol = Hix L + HHiy L - 1L * n + HHiz + pL - 1L n 2; M @@row , colDD = H-1Lp , 8p, 1, n - iz<E;

, 8iz, 1, n<, 8iy , 1, n<, 8ix , 1, n<E

MatrixRank@M D
64
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MatrixPlot@M , ColorFunction ® "Monochrome"D

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

64

M �� MatrixForm ;

2  DD.nb
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E.3 AHOTN-1 Method
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AHOTN - 1 Thick diffusion Limit

Construction of B matrix

Note that boundary cells are considered in this implementation by checking if the neigh-
boring cell exist. If not then the corresponding 

contributions are not added which is consistent with the derived equations.

In[1]:= ncells = 4; dofpc = 8;

In[2]:= size = ncells3
* dofpc;

In[3]:= column@ix_ , iy_ , iz_ , mx_ , my_ , mz_ D =

I ix + ncells * Hiy - 1L + ncells2
* Hiz - 1L - 1M * dofpc + mz + 1 + my * 2 + mx * 4 ;

In[4]:= mat = Table@0, 8row , 1, size<, 8col, 1, size<D;

In[5]:= DoA row =

I ix + ncells * Hiy - 1L + ncells2
* Hiz - 1L - 1M * dofpc + mz + 1 + my * 2 + mx * 4 ;

H* Now adding sx + contributions*L
mat@@row , column@ix , iy , iz, 0, my , mzD DD =

mat@@row , column@ix , iy , iz, 0, my , mzD DD + 1;

If@ix > 1, mat@@row , column@ix - 1, iy , iz, 0, my , mzD DD =

mat@@row , column@ix - 1, iy , iz, 0, my , mzD DD - H-1Lmx D;

mat@@row , column@ix , iy , iz, 1, my , mzD DD =

mat@@row , column@ix , iy , iz, 1, my , mzD DD + 3;

If@ix > 1, mat@@row , column@ix - 1, iy , iz, 1, my , mzD DD =

mat@@row , column@ix - 1, iy , iz, 1, my , mzD DD - 3 H-1Lmx D;

H* Now adding sx - contributions*L
mat@@row , column@ix , iy , iz, 0, my , mzD DD =

mat@@row , column@ix , iy , iz, 0, my , mzD DD + H-1Lmx ;

If@ix < ncells, mat@@row , column@ix + 1, iy , iz, 0, my , mzD DD =

mat@@row , column@ix + 1, iy , iz, 0, my , mzD DD - 1D;

mat@@row , column@ix , iy , iz, 1, my , mzD DD =

mat@@row , column@ix , iy , iz, 1, my , mzD DD - 3 H-1Lmx ;

If@ix < ncells, mat@@row , column@ix + 1, iy , iz, 1, my , mzD DD =

mat@@row , column@ix + 1, iy , iz, 1, my , mzD DD + 3D;

H* Now adding sy + contributions*L
mat@@row , column@ix , iy , iz, mx , 0, mzD DD =

mat@@row , column@ix , iy , iz, mx , 0, mzD DD + 1;

If@iy > 1, mat@@row , column@ix , iy - 1, iz, mx , 0, mzD DD =

mat@@row , column@ix , iy - 1, iz, mx , 0, mzD DD - H-1Lmy D;

mat@@row , column@ix , iy , iz, mx , 1, mzD DD =

mat@@row , column@ix , iy , iz, mx , 1, mzD DD + 3;

If@iy > 1, mat@@row , column@ix , iy - 1, iz, mx , 1, mzD DD =

mat@@row , column@ix , iy - 1, iz, mx , 1, mzD DD - 3 H-1Lmy D;

H* Now adding sy - contributions*L
mat@@row , column@ix , iy , iz, mx , 0, mzD DD =

;
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In[5]:=

mat@@row , column@ix , iy , iz, mx , 0, mzD DD + H-1Lmy ;

If@iy < ncells, mat@@row , column@ix , iy + 1, iz, mx , 0, mzD DD =

mat@@row , column@ix , iy + 1, iz, mx , 0, mzD DD - 1D;

mat@@row , column@ix , iy , iz, mx , 1, mzD DD =

mat@@row , column@ix , iy , iz, mx , 1, mzD DD - 3 H-1Lmy ;

If@iy < ncells, mat@@row , column@ix , iy + 1, iz, mx , 1, mzD DD =

mat@@row , column@ix , iy + 1, iz, mx , 1, mzD DD + 3D;

H* Now adding sz+ contributions*L
mat@@row , column@ix , iy , iz, mx , my , 0D DD =

mat@@row , column@ix , iy , iz, mx , my , 0D DD + 1;

If@iz > 1, mat@@row , column@ix , iy , iz - 1, mx , my , 0D DD =

mat@@row , column@ix , iy , iz - 1, mx , my , 0D DD - H-1Lmz D;

mat@@row , column@ix , iy , iz, mx , my , 1D DD =

mat@@row , column@ix , iy , iz, mx , my , 1D DD + 3;

If@iz > 1, mat@@row , column@ix , iy , iz - 1, mx , my , 1D DD =

mat@@row , column@ix , iy , iz - 1, mx , my , 1D DD - 3 H-1Lmz D;

H* Now adding sz- contributions*L
mat@@row , column@ix , iy , iz, mx , my , 0D DD =

mat@@row , column@ix , iy , iz, mx , my , 0D DD + H-1Lmz ;

If@iz < ncells, mat@@row , column@ix , iy , iz + 1, mx , my , 0D DD =

mat@@row , column@ix , iy , iz + 1, mx , my , 0D DD - 1D;

mat@@row , column@ix , iy , iz, mx , my , 1D DD =

mat@@row , column@ix , iy , iz, mx , my , 1D DD - 3 H-1Lmz ;

If@iz < ncells, mat@@row , column@ix , iy , iz + 1, mx , my , 1D DD =

mat@@row , column@ix , iy , iz + 1, mx , my , 1D DD + 3D;

, 8iz, 1, ncells<, 8iy , 1, ncells<, 8ix , 1, ncells<, 8mx , 0, 1<, 8my , 0, 1<, 8mz, 0, 1<E;

In[6]:= MatrixPlot@mat, ColorFunction ® "Monochrome"D

2  AHOTN-1.nb
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Out[6]=
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In[7]:= MatrixRank@matD
Out[7]= 485

AHOTN-1.nb   3
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E.4 LL and LN Methods
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LL/LN Thick diffusion Limit

Construction of B matrix

Note that boundary cells are considered in this implementation by checking if the neigh-
boring cell exist. If not then the corresponding 

contributions are not added which is consistent with the derived equations.

In[1]:= ncells = 4; dofpc = 4;

In[2]:= size = ncells3
* dofpc;

In[3]:= subpos@mx_ , my_ , mz_ D =

Switch @8mx , my , mz<, 80, 0, 0<, 1, 80, 0, 1<, 2, 80, 1, 0<, 3, 81, 0, 0<, 4D;

In[4]:= pos@ix_ , iy_ , iz_ , mx_ , my_ , mz_ D =

I ix + ncells * Hiy - 1L + ncells2
* Hiz - 1L - 1M * dofpc + subpos@mx , my , mzD ;

In[5]:= mat = Table@0, 8row , 1, size<, 8col, 1, size<D;

In[6]:= Do@ row = pos@ix , iy , iz, mx , my , mzD ;

H**** Case H0,0,0L****L
If@subpos@mx , my , mzD � 1,

H* k=x *L
mat@@row , pos@ix , iy , iz, 0, 0, 0D DD = mat@@row , pos@ix , iy , iz, 0, 0, 0D DD + 2;

If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 0, 0, 0D DD =

mat@@row , pos@ix - 1, iy , iz, 0, 0, 0D DD - 1D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 0, 0, 0D DD =

mat@@row , pos@ix + 1, iy , iz, 0, 0, 0D DD - 1D;

If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 1, 0, 0D DD =

mat@@row , pos@ix - 1, iy , iz, 1, 0, 0D DD - 3D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 1, 0, 0D DD =

mat@@row , pos@ix + 1, iy , iz, 1, 0, 0D DD + 3D;

H* k=y *L
mat@@row , pos@ix , iy , iz, 0, 0, 0D DD = mat@@row , pos@ix , iy , iz, 0, 0, 0D DD + 2;

If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 0, 0, 0D DD =

mat@@row , pos@ix , iy - 1, iz, 0, 0, 0D DD - 1D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 0, 0, 0D DD =

mat@@row , pos@ix , iy + 1, iz, 0, 0, 0D DD - 1D;

If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 0, 1, 0D DD =

mat@@row , pos@ix , iy - 1, iz, 0, 1, 0D DD - 3D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 0, 1, 0D DD =

mat@@row , pos@ix , iy + 1, iz, 0, 1, 0D DD + 3D;

H* k=z *L
mat@@row , pos@ix , iy , iz, 0, 0, 0D DD = mat@@row , pos@ix , iy , iz, 0, 0, 0D DD + 2;

If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 0, 0, 0D DD =

mat@@row , pos@ix , iy , iz - 1, 0, 0, 0D DD - 1D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 0, 0, 0D DD =

mat@@row , pos@ix , iy , iz + 1, 0, 0, 0D DD - 1D;
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In[6]:=

If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 0, 0, 1D DD =

mat@@row , pos@ix , iy , iz - 1, 0, 0, 1D DD - 3D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 0, 0, 1D DD =

mat@@row , pos@ix , iy , iz + 1, 0, 0, 1D DD + 3D;

D;

H**** Case H0,0,1L****L
If@subpos@mx , my , mzD � 2,

H* k=x *L
mat@@row , pos@ix , iy , iz, 0, 0, 1D DD = mat@@row , pos@ix , iy , iz, 0, 0, 1D DD + 2;

If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 0, 0, 1D DD =

mat@@row , pos@ix - 1, iy , iz, 0, 0, 1D DD - 1D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 0, 0, 1D DD =

mat@@row , pos@ix + 1, iy , iz, 0, 0, 1D DD - 1D;

H* k=y *L
mat@@row , pos@ix , iy , iz, 0, 0, 1D DD = mat@@row , pos@ix , iy , iz, 0, 0, 1D DD + 2;

If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 0, 0, 1D DD =

mat@@row , pos@ix , iy - 1, iz, 0, 0, 1D DD - 1D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 0, 0, 1D DD =

mat@@row , pos@ix , iy + 1, iz, 0, 0, 1D DD - 1D;

H* k=z *L
If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 0, 0, 0D DD =

mat@@row , pos@ix , iy , iz - 1, 0, 0, 0D DD + 1D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 0, 0, 0D DD =

mat@@row , pos@ix , iy , iz + 1, 0, 0, 0D DD - 1D;

mat@@row , pos@ix , iy , iz, 0, 0, 1D DD = mat@@row , pos@ix , iy , iz, 0, 0, 1D DD + 6;

If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 0, 0, 1D DD =

mat@@row , pos@ix , iy , iz - 1, 0, 0, 1D DD + 3D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 0, 0, 1D DD =

mat@@row , pos@ix , iy , iz + 1, 0, 0, 1D DD + 3D;D
H**** Case H0,1,0L****L
If@subpos@mx , my , mzD � 3,

H* k=x *L
mat@@row , pos@ix , iy , iz, 0, 1, 0D DD = mat@@row , pos@ix , iy , iz, 0, 1, 0D DD + 2;

If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 0, 1, 0D DD =

mat@@row , pos@ix - 1, iy , iz, 0, 1, 0D DD - 1D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 0, 1, 0D DD =

mat@@row , pos@ix + 1, iy , iz, 0, 1, 0D DD - 1D;

H* k=y *L
If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 0, 0, 0D DD =

mat@@row , pos@ix , iy - 1, iz, 0, 0, 0D DD + 1D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 0, 0, 0D DD =

mat@@row , pos@ix , iy + 1, iz, 0, 0, 0D DD - 1D;

mat@@row , pos@ix , iy , iz, 0, 1, 0D DD = mat@@row , pos@ix , iy , iz, 0, 1, 0D DD + 6;

If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 0, 1, 0D DD =

mat@@row , pos@ix , iy - 1, iz, 0, 1, 0D DD + 3D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 0, 1, 0D DD =

mat@@row , pos@ix , iy + 1, iz, 0, 1, 0DD D + 3D;

H* k=z *L
mat@@row , pos@ix , iy , iz, 0, 1, 0D DD = mat@@row , pos@ix , iy , iz, 0, 1, 0D DD + 2;
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In[6]:=

If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 0, 1, 0D DD =

mat@@row , pos@ix , iy , iz - 1, 0, 1, 0D DD - 1D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 0, 1, 0D DD =

mat@@row , pos@ix , iy , iz + 1, 0, 1, 0D DD - 1D;

D;

H**** Case H1,0,0L****L
If@subpos@mx , my , mzD � 4,

H* k=x *L
If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 0, 0, 0D DD =

mat@@row , pos@ix - 1, iy , iz, 0, 0, 0D DD + 1D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 0, 0, 0D DD =

mat@@row , pos@ix + 1, iy , iz, 0, 0, 0D DD - 1D;

mat@@row , pos@ix , iy , iz, 1, 0, 0D DD = mat@@row , pos@ix , iy , iz, 1, 0, 0D DD + 6;

If@ix > 1, mat@@row , pos@ix - 1, iy , iz, 0, 1, 0D DD =

mat@@row , pos@ix - 1, iy , iz, 0, 1, 0D DD + 3D;

If@ix < ncells, mat@@row , pos@ix + 1, iy , iz, 0, 1, 0D DD =

mat@@row , pos@ix + 1, iy , iz, 0, 1, 0DD D + 3D;

H* k=y *L
mat@@row , pos@ix , iy , iz, 1, 0, 0D DD = mat@@row , pos@ix , iy , iz, 1, 0, 0D DD + 2;

If@iy > 1, mat@@row , pos@ix , iy - 1, iz, 1, 0, 0D DD =

mat@@row , pos@ix , iy - 1, iz, 1, 0, 0D DD - 1D;

If@iy < ncells, mat@@row , pos@ix , iy + 1, iz, 1, 0, 0D DD =

mat@@row , pos@ix , iy + 1, iz, 1, 0, 0D DD - 1D;

H* k=z *L
mat@@row , pos@ix , iy , iz, 1, 0, 0D DD = mat@@row , pos@ix , iy , iz, 1, 0, 0D DD + 2;

If@iz > 1, mat@@row , pos@ix , iy , iz - 1, 1, 0, 0D DD =

mat@@row , pos@ix , iy , iz - 1, 1, 0, 0D DD - 1D;

If@iz < ncells, mat@@row , pos@ix , iy , iz + 1, 1, 0, 0D DD =

mat@@row , pos@ix , iy , iz + 1, 1, 0, 0D DD - 1D;

D;

H*** Iterator ***L
, 8iz, 1, ncells<, 8iy , 1, ncells<, 8ix , 1, ncells<, 8mx , 0, 1<, 8my , 0, 1<, 8mz, 0, 1<D;

In[7]:= MatrixPlot@mat, ColorFunction ® "Monochrome"D

LL_LN.nb   3

Printed by Mathematica for Students

314



www.manaraa.com

Out[7]=

1 100 200 256

1

100

200

256

1 100 200 256

1

100

200

256

In[8]:= MatrixRank@matD
Out[8]= 256
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Appendix F

Validation Exercise Complete Set of

Results

The simple score Γ as a number is not meaningful unless two consistently computed Γ values

for two discretization methods are compared to each other. Therefore, the obtained predicted

and actual scores are rescaled as follows. First, among all the predicted scores, i.e. for all

participating methods and orders Λ, the maximum and minimum score Γpred,max and Γpred,min

are determined. Then each score is scaled as (l runs over all methods and orders Λ):

Γpred,l ←
Γpred,l − Γpred,min

Γpred,max − Γpred,min
. (F.1)

The same procedure is applied to the scores computed directly from results obtained for the

NEA benchmark problem:

ΓNEA,l ←
ΓNEA,l − ΓNEA,min

ΓNEA,max − ΓNEA,min
. (F.2)

Both Γpred,l and ΓNEA,l now range from zero to one with these values actually being assumed

by one of the methods data/prediction points.

Most of the presented verification results utilize quantity 1.a as target quantity. It shall be

implicitly assumed that the target quantity that the real world accuracies are computed for is

1.a unless otherwise noted.

In each of the following figures the upper two plots are predicted scores plotted versus the

cell optical thickness and the lower two plots are actual scores plotted versus the cell optical

thickness.
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Figure F.1: Results of the validation exercise for NEA-I with ~β = (0, 0, 0, 1).
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Figure F.2: Results of the validation exercise for NEA-I with ~β = (1, 0, 1, 0).
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Figure F.3: Results of the validation exercise for NEA-I with ~β = (1, 0, 1, 0). Quantity 3.c is
selected as target quantity.
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Figure F.4: Results of the validation exercise for NEA-I with ~β = (0, 1, 0, 2).
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Figure F.5: Results of the validation exercise for NEA-II with ~β = (0, 0, 0, 1).
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Figure F.6: Results of the validation exercise for NEA-II with ~β = (1, 0, 1, 0).
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Figure F.7: Results of the validation exercise for NEA-II with ~β = (0, 1, 0, 2).
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Figure F.8: Results of the validation exercise for NEA-III with ~β = (0, 0, 0, 1).
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Figure F.9: Results of the validation exercise for NEA-III with ~β = (1, 0, 1, 0).
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Figure F.10: Results of the validation exercise for NEA-III with ~β = (0, 1, 0, 2).
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Figure F.11: Results of the validation exercise for NEA-IV with ~β = (1, 0, 1, 0).
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Figure F.12: Results of the validation exercise for NEA-IV with ~β = (0, 1, 0, 2).
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